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Abstract

The rapid growth of data-intensive applications like AI has led to a significant
increase in the energy consumption and carbon footprint of data centers. Liquid
cooling has emerged as a crucial technology to manage the thermal loads of high-
density servers more efficiently than traditional air cooling. However, optimizing
the complex dynamics of liquid cooling systems to maximize energy efficiency
remains a significant challenge. To accelerate research in this domain, we design a
suite of highly scalable reinforcement learning (RL) control strategies for liquid-
cooled data centers. We demonstrate our work on a digital twin of the Oak
Ridge National Laboratory’s Frontier supercomputer cooling system that provides
a detailed, customization, and scalable platform for end-to-end liquid cooling
control. We demonstrate the utility of our framework by developing and evaluating
centralized and decentralized multi-agent RL controllers that optimize cooling
tower and server-level operations. Our results show centralized RL-based control
can significantly improve operational carbon footprint and thermal management
compared to traditional RL applications in literature, thereby offering a promising
path toward more sustainable data centers and mitigating their climate impact.

1 Introduction

Controlling the dynamic thermal environment in liquid-cooled HPC data centers is a challenging
problem. Current industrial cooling often uses static strategies [1], failing to leverage the full
energy-saving potential of liquid cooling [2]. While deep reinforcement learning (RL) has shown
promise in optimizing cooling operations and achieving 10-14% energy and carbon reductions [3,
2, 4, 5, 6, 7, 8, 6], existing RL approaches struggle to scale to the complexity of modern HPC
environments [9, 10, 11, 12] and face efficiency bottlenecks that hinder real-time application [3, 2].

This work addresses these gaps by introducing and validating a scalable, multi-agent RL
architecture for end-to-end control of liquid-cooled HPC data centers. Grounded in a digital twin
of the Oak Ridge National Laboratory’s Frontier system, our approach introduces a novel batching
and multi-head policy infrastructure to enable efficient, parallelized inference across thousands of
actuators without compromising performance or safety.

∗Corresponding author.

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.



2 System Overview
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Figure 1: System Overview of end-to-
end Control of Liquid Cooled Data Cen-
ter. The CDU RL agents control the HPC
server cabinets. The Cooling Towers are
controlled by the CT RL agents.

The testbed environment models an end-to-end liquid cool-
ing system, from the site-level cooling towers to the data
center cabinets and server blade groups. Figure 1 provides
a system overview. The system consists of Cooling Tow-
ers, which reject heat to the environment, and Cooling
Distribution Units (CDUs) that manage the coolant for the
HPC server cabinets. The benchmark supports customiz-
able data center setups, including the number of cooling
towers, cabinets, and blade groups. It also includes a Heat
Recovery Unit (HRU) model, which allows for the evalua-
tion of strategies for reusing waste heat, further enhancing
the system’s sustainability.

3 Modeling and Control Interface

The digital twin environment uses Modelica-based models for all its components, ensuring a high-
fidelity representation of the thermo-fluidic dynamics. To enable ML-based control, the model
is exported to a Functional Mockup Unit (FMU), which integrates with Python frameworks like
Gymnasium [13]. We focus on two primary control problems: Cooling Tower Control: Minimize the
energy consumption of the cooling towers while ensuring adequate heat rejection. The corresponding
Markov Decision Process (MDP) is detailed in Table 4 in the Appendix. Secondly, Blade Group
Level Control: Maintain the operating temperatures of the server blade groups within optimal ranges
to ensure reliability and performance. The MDP for this is shown in Table 5 in the Appendix.

4 RL Design for Efficient Control at HPC scale

We employ an efficient multi-agent reinforcement learning (MARL) approach to control the liquid
cooling system. The Cooling Tower (CT) and Blade Group (BG) are controlled by independent
multihead agents, addressing the scalability challenges of a centralized controller.
Centralized Action Execution in Multi-agent RL To improve the efficiency of the multi-agent
setup, we implement a centralized action execution approach. This involves batching observations
from similar entities (e.g., all cooling towers or all blade groups in a cabinet) and performing a
single forward pass through the policy network. This approach, detailed in Figure 2 in the Appendix,
significantly speeds up the inference process during rollouts without sacrificing the decentralized
nature of the control policy.
Improved Reward Feedback via Multi-Head Policy For the Blade Group MDP, we utilize a
multi-headed policy architecture. One head of the policy network determines the coolant supply
temperature setpoint and pump flow rate, while the second head controls the valve openings for
each blade group. This decomposition of the action space provides more direct reward feedback to
each component of the policy, facilitating the discovery of more effective control strategies. The
second head uses a Dirichlet distribution to ensure the valve openings are normalized, representing
the proportional distribution of coolant.

5 Experiments and Results

We evaluate the performance of our RL-based control strategies against a baseline controller based on
the industry standard ASHRAE Guideline 36 [1]. The experiments were conducted on a simulated
data center with 2 cooling towers, 5 cabinets, and 3 blade groups per cabinet.

Ablation Study of RL Agent Design Table 1 presents an ablation study of different RL agent
designs. The baseline control (Case 1) achieves a blade group temperature compliance of 76.92%.
Introducing RL for the cooling tower alone (Case 2) slightly improves temperature compliance but
increases power consumption. RL control at the blade group level (Cases 3 and 4) shows the potential
for power savings. The multi-agent RL approaches (Cases 5-7) demonstrate significant improvements
in both temperature compliance and energy efficiency. The multi-agent RL with centralized action
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and a multi-head policy (Case 7) achieves the best performance, with 95.63% temperature compliance
and the lowest cooling tower power consumption. This performance improvement is further visually
represented in Figure 3.

Table 1: Ablation of RL Agent Design. We incrementally replace the static baseline (Case 1) with
RL controllers for: Cooling Tower (Case 2), CDU coolant setpoint/flow (Case 3), and Blade Group
valves (Case 4). Case 5 introduces a single multi-agent RL controller, Case 6 adds batching for
state space reduction, and Case 7 uses a multi-head policy. Experiments use N=2 towers, m=2
cells, C=5 cabinets with B=3 blade groups each, and are evaluated on an unseen exogenous trace.
Blade-group temperature compliance Dblade,avg is computed with UT=40◦C and LT=20◦C.

Metric → Dblade,avg%
∑

Pij(kW )
∑

Qi Avg Episode Reward
(% of time (Cooling Tower (IT Level per per

Agent/Control Type ↓ Control Details Temp within Avg Power) Avg Cooling Cabinet Cooling
ideal range) Power) Tower

1. Baseline Control ASHRAE G36 76.92 237.31 235.28 1697.08 360.17
2. CT RL + BG Baseline Only CT RL control 79.21 246.46 235.03 1702.16 352.28
3. CT Baseline + BG RL No Valve Control 64.91 217.6 203.96 1638.48 372.97
4. CT Baseline + BG RL With Valve Control 77.13 217.37 211.83 1698.36 373.52

5. Multiagent RL Decentralized Action 78.24 218.11 212.94 1697.49 370.51
6. Multiagent RL Centralized Action (CA) 90.46 207.37 208.69 1714.65 395.88
7. Multiagent RL CA & Multihead policy 95.63 206.52 197.18 1726.31 396.24

Table 2: Performance on Scale. Eval-
uation of Rule-Based Control vs Multi-
head Centralized Action Policy for Scal-
ing of Cooling Tower Agent and Multi-
head Blade-Group Agent with increasing
Data Center sizes. Blade-Group Agent
is trained on N=2 Cooling Towers, m=2
Cells per Tower, C=5 Cabinets, B=3
Blade Groups per Cabinet

N=2, m=2 N=2, m=2
Metric C=10, B=3 C=15, B=3

Dblade,avg % ASHRAE G36 71.92 68.24
CA Policy 96.28 86.19

CFP (kgCO2)
ASHRAE G36 4448.96 6254.15
CA Policy 4432.78 6392.21

N=3, m=2 N=4, m=2
Metric C=20, B=3 C=25, B=3

Dblade,avg % ASHRAE G36 75.31 83.08
CA Policy 94.07 92.61

CFP (kgCO2)
ASHRAE G36 10518.78 15753.90
CA Policy 9932.36 12652.18

Ideal 
 .   Temperature %

Cooling Tower 
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 Reward

Cooling Tower 
 Episode Reward Carbon Footprint
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0
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Agent/Control Type
1. Baseline
2. CT RL
3. BG RL (No Valve)
4. BG RL (Valve)
5. Multiagent (Decentral.)
6. Multiagent (Batch)
7. Multiagent (Batch+MH)

Performance Comparison of Control 
 Strategies (Scaled; +1 is Best, -1 is Worst)

Table 3: Relative Performance of different RL approaches
from Table 1 for N = 2 towers, m = 2 cells, C = 5
cabinets, with B = 3 blade groups in each cabinet

Sustainability on Scale We also evaluate the carbon footprint scalability of our approach by
increasing the size of the data center. Table 2 shows that the multi-head centralized action RL policy
consistently outperforms the ASHRAE G36 baseline in terms of temperature compliance across
different data center scales. The RL policy also demonstrates significant carbon footprint savings,
especially in larger configurations.

6 Conclusion and Climate Change Impact

We have introduced a suite of efficient RL agent implementations in PPO for developing and evaluat-
ing energy-efficient liquid cooling control strategies for data centers. Our experiments demonstrate
the potential for significant energy and carbon footprint savings and improved thermal management
compared to traditional RL methods. The significant carbon footprint reductions achieved by our RL
agents offer a clear path toward more practical RL implementations for sustainable data centers. This
work provides a valuable collection of RL-enabled solutions that can help tackle climate change by
reducing the environmental footprint of our digital infrastructure.
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Appendix: Centralized Action Execution
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Figure 2: Centralized Action Execution Approach for scalable inference and rollouts at the CDU(s)
and Blade Group(s) for HPC scale data center Digital Twins

Appendix: MDP Tables

Table 4: Cooling Tower MDP
MDP Attributes Formulation Remarks

State (st)

[
P11 . . . P1j . . . P1t, Tct,1

...
. . .

...
. . .

...
...

Pi1 . . . Pij . . . Pit, Tct,i

...
. . .

...
. . .

...
...

PN1 . . . PNj . . . PNt, Tct,N Twb

]

Pij refers to the power
consumption of the jth cell of

the ith cooling tower. Tct,i

refers to the ith cooling
tower water return temperature.

Twb is the outside air wet
bulb temperature

Action (at) δ1, . . . , δi, . . . , δN

The agents sets the changes in cooling tower
water return temperature setpoint Tct,i by δi

across all the N cooling towers
Reward

(rt(st, at, st+1))
−
∑

i,j Pi,j
It is the sum total of the power consumption
across all the cells for all the cooling towers

Table 5: Blade Group Level MDP
MDP Attributes Formulation Remarks

State (st)

[
T11 . . . T1j . . . T1B P11 . . . P1j . . . P1B

...
. . .

...
. . .

...
...

. . .
...

. . .
...

Ti1 . . . Tij . . . TiB Pi1 . . . Pij . . . PiB

...
. . .

...
. . .

...
...

. . .
...

. . .
...

TC1 . . . TCj . . . TCB PC1 . . . PCj . . . PCB

]
Tij and Pij refer to the temperature

and thermal power input respectively of the jth

blade group of the ith cabinet.

Action (at)

[
v11 . . . v1j . . . v1B Tcdu,1 Qcdu,1

...
. . .

...
. . .

...
...

...
vi1 . . . vij . . . viB Tcdu,i Qcdu,i

...
. . .

...
. . .

...
...

...
vC1 . . . vCj . . . vCB Tcdu,C Qcdu,C

]
Tcdu,i and Qcdu,i refer to the liquid

coolant supply temperature setpoint and pump flow
rate of the ith cabinet. vij refers to the valve

actuation of the jth blade group of the ith cabinet

Reward
(rt(st, at, st+1))

−
∑

ij Tij
It is the aggregate of the

blade group operation temperatures

Appendix: Frontier Model

Figure 3: Frontier’s Cooling System [Brewer et al. 2024]
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