Multiscale Neural PDE Surrogates for Prediction and Downscaling: Application to Ocean Currents

¹ Mila – Québec AI Institute ² École Polytechnique, France ³ UQAR, Canada ⁴ Institut Pierre-Simon Laplace, Paris abdessamad.el-kabid@polytechnique.edu

Motivation

- High-resolution (≤ 2 km) surface currents are critical for spill drift, coastal planning, and autonomous navigation.
- Goal: a single neural surrogate that
 - 1. solves spatio-temporal PDEs, and
 - 2. zero-shot downscales coarse solutions.

Problem Setup

- Low-resolution sample $\mathbf{a} \in R^{d_a}$, high-resolution sample $\mathbf{b} \in R^{d_b}$ with $d_b \gg d_a$.
- Classical super-resolution learns a fixedsize map $f: R^{d_a} \to R^{d_b}$.
- Our formulation: learn a map from vectors to functions

$$G^{\star}: R^{d_a \times T_{in}} \longrightarrow \mathcal{U}(D; R^c),$$

where $\mathcal{U}(D;R^c)$ is a Banach space of c-channel fields on continuous spaciotemporal domain $D \subset R^d \times R^+$.

• A discrete high-res image is a sampling of $u = G^*(\mathbf{a})$, hence we can evaluate u on (theoretically) any grid after training.

Models

DFNO (Downscaling Fourier Neural Operator): **Baseline** model combining low-res input with Fourier neural operator to produce resolution-flexible outputs.

DUNO (U-shaped Neural Operator): Variant replacing FNO with a u-shaped neural operator for increased expressiveness across PDE types. **SpecDFNO**: Adds a spectral residual head to DENO. A second neural operator estimates

to DFNO. A second neural operator estimates high-frequency residuals, improving fine detail accuracy.

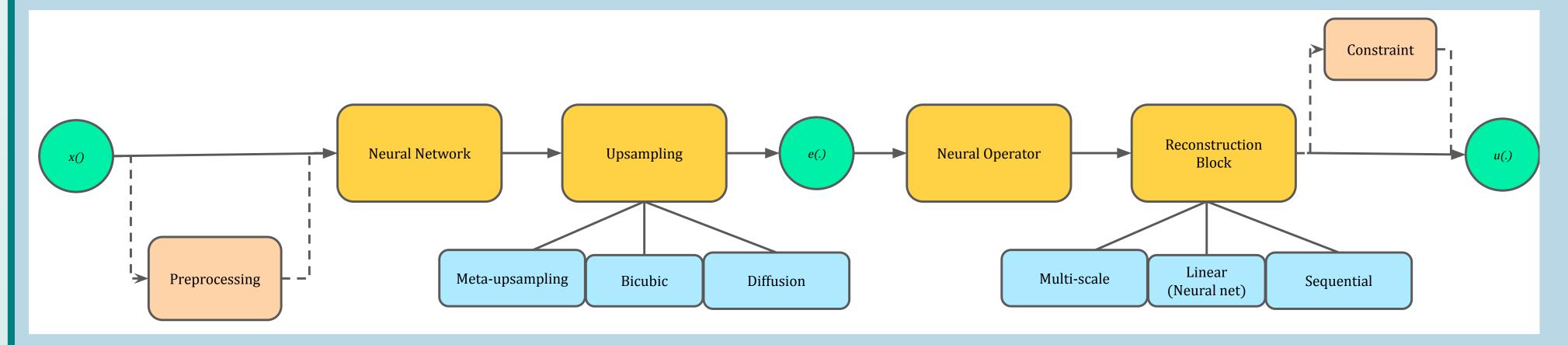
Temp_DFNO and Temp_SpecDFNO: Temporal versions of DFNO/SpecDFNO. Extend convolutions along the time axis to capture spatio-temporal PDE dynamics.

References

- [1] S. Qin, F. Lyu, W. Peng, D. Geng, J. Wang, X. Tang, S. Leroyer, N. Gao, X. Liu, L. Wang: Toward a Better Understanding of Fourier Neural Operators from a Spectral Perspective, arXiv:2404.07200 (2024)
- [2] Q. Yang, A. Hernandez-Garcia, P. Harder, V. Ramesh, P. Sattigeri, D. Szwarcman, C. D. Watson, D. Rolnick: Fourier Neural Operators for Arbitrary Resolution Climate Data Downscaling, arXiv:2305.14452 (2023)
- [3] P. Harder, A. Hernandez-Garcia, V. Ramesh, Q. Yang, P. Sattigeri, D. Szwarcman, C. D. Watson, D. Rolnick: *Hard-Constrained Deep Learning for Climate Downscaling*, arXiv:2208.05424 (2024)

Acknowledgements

This research was partially supported by Xpert Solutions Technologiques Inc and Mitacs. The supports are gratefully acknowledged.

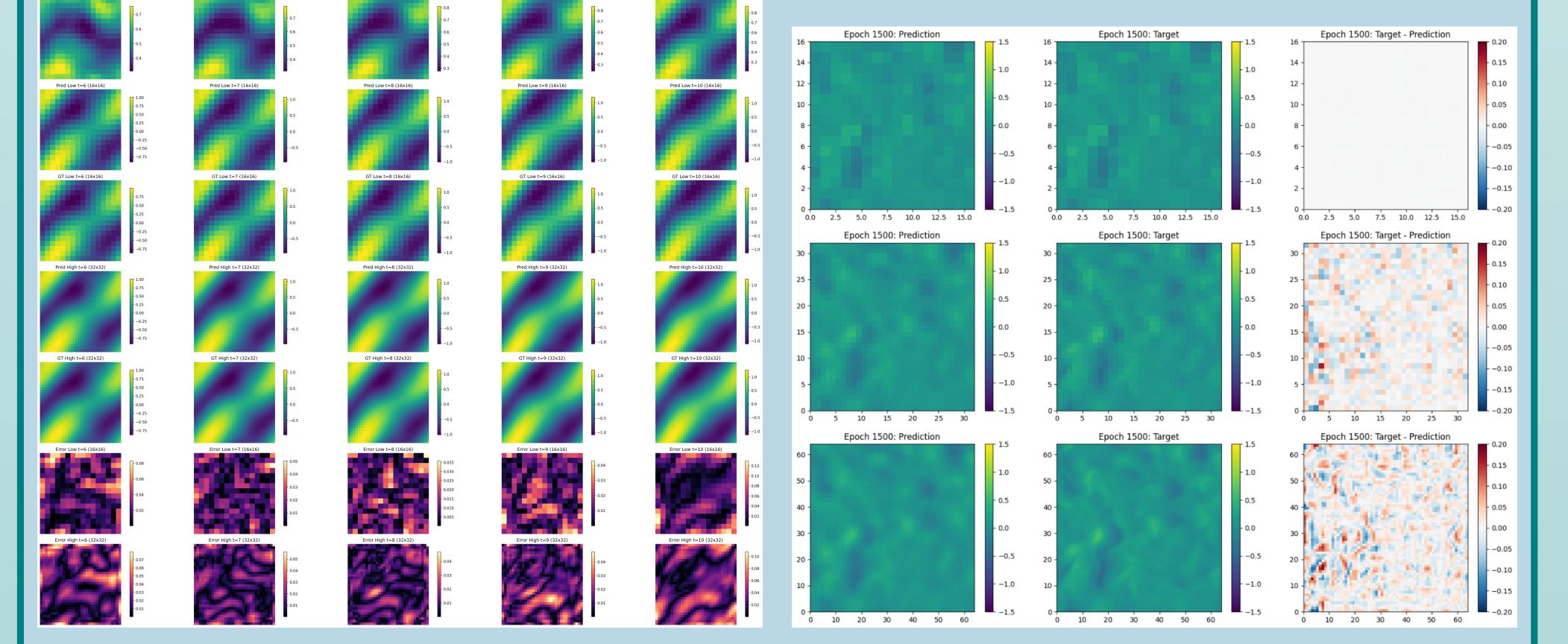


Framework

The approximator G_{θ}^{\star} is constructed as follows:

$$G_{\theta}^{\star}(\mathbf{a}) = P_{post}(F_{\theta_2}(T^{-1}(f_{\theta_1}(P_{pre}(\mathbf{a})))))$$

- $P_{pre}: R^{d_a \times T_{in}} \to R^{d_a}$ optional normalisation, gradient extraction, channel stacking.
- $f_{\theta_1}: R^{d_a} \to R^d$ neural network.
- $T^{-1}: R^d \to \mathcal{E}(D; R^c)$ discretization inversion operator (mapping from a vector to a function)
- $F_{\theta_2}: \mathcal{E} \to \mathcal{U}$ neural operator refining the field into function.
- $P_{post}: \mathcal{U} \to \mathcal{U}$ reconstruction and soft-constraint layer enforcing physical laws.


The model is **resolution-agnostic** — when trained on $2\times$ downscaling, it can do zero-shot $4\times, 8\times$... downscaling.

Experiments & Results

- Surrogate PDE task Temporal DFNO variants predict five future Navier–Stokes frames; evaluated on 32² and 64² unseen grids.
- Static down-scaling task Zero-shot $2\times/4\times$ on CMEMS surface currents; baselines are CNN-U-Nets trained at $2\times$ and $4\times$.

Navier–Stokes surrogate				
Model	Resolution	MAE	MSE	
Temp_DFNO	16×16 32×32 64×64	$\begin{array}{c} 0.017941 \\ 0.017426 \\ 0.019775 \end{array}$	0.000603 0.000573 0.000722	
Temp_SpecDFNO	16×16 32×32 64×64	0.017806 0.017372 0.019736	0.000599 0.000568 0.000712	
DFNO-2	32×32 64×64	$0.0124 \\ 0.0246$	$0.0004 \\ 0.0018$	
DFNO-4	32×32 64×64	$0.0208 \\ 0.0168$	$0.0012 \\ 0.0007$	

CMEMS 4× down-scaling				
Model	Loss	MAE	SSIM	
$CNN-U-Net(4\times)$	L2	0.395	0.116	
DFNO	L2	0.042	0.840	
DUNO	L2	0.043	0.822	
$\mathbf{SpecDFNO}$	L2	0.037	0.874	

Left: Temporal DFNO – low-res input, $16^2/32^2$ predictions, ground truth. Right: SpecDFNO – $4\times$ reconstruction of a CMEMS patch.

Future Work

- Uncertainty quantification. Incorporating uncertainty quantification through probabilistic neural operators and ensemble-based diffusion strategies to express confidence in the high-resolution outputs.
- **Theoretical analysis.** Characterize the limits of these models, particularly as the governing physical behavior and physics equations change with increasing resolution.