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Motivation
• High-resolution (≤2 km) surface currents

are critical for spill drift, coastal planning,
and autonomous navigation.

• Goal: a single neural surrogate that

1. solves spatio-temporal PDEs, and
2. zero-shot downscales coarse solu-

tions.

Problem Setup
• Low-resolution sample a ∈ Rda , high-

resolution sample b ∈ Rdb with db ≫ da.
• Classical super-resolution learns a fixed-

size map f : Rda →Rdb .
• Our formulation: learn a map from vec-

tors to functions

G⋆ : Rda×Tin −→ U(D;Rc),

where U(D;Rc) is a Banach space of
c-channel fields on continuous spacio-
temporal domain D ⊂ Rd ×R+.

• A discrete high-res image is a sampling of
u = G⋆(a), hence we can evaluate u on
(theoretically) any grid after training.

Models
DFNO (Downscaling Fourier Neural Opera-
tor): Baseline model combining low-res in-
put with Fourier neural operator to produce
resolution-flexible outputs.
DUNO (U-shaped Neural Operator): Variant
replacing FNO with a u-shaped neural operator
for increased expressiveness across PDE types.
SpecDFNO: Adds a spectral residual head
to DFNO. A second neural operator estimates
high-frequency residuals, improving fine detail
accuracy.
Temp_DFNO and Temp_SpecDFNO:
Temporal versions of DFNO/SpecDFNO. Ex-
tend convolutions along the time axis to capture
spatio-temporal PDE dynamics.
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Framework
The approximator G⋆

θ is constructed as follows:

G⋆
θ(a) = Ppost

(
Fθ2

(
T−1

(
fθ1

(
Ppre(a)

))))
• Ppre : R

da×Tin →Rda — optional normalisation, gradient extraction, channel stacking.
• fθ1 : Rda →Rd — neural network.
• T−1 : Rd→E(D;Rc) — discretization inversion operator (mapping from a vector to a function)
• Fθ2 : E→U — neural operator refining the field into function.
• Ppost : U→U — reconstruction and soft-constraint layer enforcing physical laws.
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The model is resolution-agnostic — when trained on 2× downscaling, it can do zero-shot 4×, 8×
... downscaling.

Experiments & Results
• Surrogate PDE task – Temporal DFNO variants predict five future Navier–Stokes frames;

evaluated on 322 and 642 unseen grids.
• Static down-scaling task – Zero-shot 2×/4× on CMEMS surface currents; baselines are

CNN-U-Nets trained at 2× and 4×.

Navier–Stokes surrogate
Model Resolution MAE MSE

Temp_DFNO
16×16 0.017941 0.000603
32×32 0.017426 0.000573
64×64 0.019775 0.000722

Temp_SpecDFNO
16×16 0.017806 0.000599
32×32 0.017372 0.000568
64×64 0.019736 0.000712

DFNO-2 32×32 0.0124 0.0004
64×64 0.0246 0.0018

DFNO-4 32×32 0.0208 0.0012
64×64 0.0168 0.0007

CMEMS 4× down-scaling
Model Loss MAE SSIM

CNN-U-Net (4×) L2 0.395 0.116
DFNO L2 0.042 0.840
DUNO L2 0.043 0.822
SpecDFNO L2 0.037 0.874

Left: Temporal DFNO – low-res input, 162/322 predictions, ground truth. Right: SpecDFNO – 4× recon-
struction of a CMEMS patch.

Future Work
• Uncertainty quantification. Incorporating uncertainty quantification through probabilistic

neural operators and ensemble-based diffusion strategies to express confidence in the high-
resolution outputs.

• Theoretical analysis. Characterize the limits of these models, particularly as the governing
physical behavior and physics equations change with increasing resolution.


