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Abstract

Realizing practical fusion energy remains one of society’s most significant unre-
solved scientific challenges, carrying profound implications for sustainable, carbon-
free power. A key determinant of success in Inertial Confinement Fusion (ICF)
experiments is the design of a Laser Pulse (LP) Shape capable of optimally driving
implosions within strict physical limits. Conventional LP design depends on costly
simulations and labor-intensive iterative tuning. To address this, we introduce the
Laser Pulse Shape Design System (LPDS), a generative inverse modeling frame-
work based on auto-regression that directly maps desired fusion outcomes and
target pellet parameters to optimized LPs. We explore a multi-objective training
setup to design diverse LPs that adhere to physical constraint while achieving less
than 2% error in the desired implosion outcomes. In addition, we incorporate
constraint-conditioning via inpainting and gradient-based editing strategies, en-
abling precise control over pulse characteristics during generation. This framework
offers a data-driven solution for LP design in ICF, advancing the pursuit of practical,
sustainable fusion energy.

1 Introduction
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Figure 1: The LP is typically characterized by
12 parameters, some of which are annotated
here.

Inertial Confinement Fusion (ICF) offers the promise of
virtually limitless clean energy. It achieves nuclear fusion
with high-energy lasers that compress and heat fuel pel-
lets to extreme temperatures and pressures, overcoming
electrostatic repulsion between nuclei [1]. Achieving ig-
nition requires a precise, symmetric implosion regulated
by the laser pulse (LP) shape—the temporal energy pro-
file controlling compression over 3 nanoseconds. The
LP is structured in stages: a low-intensity foot launching
timed shocks, a rising ramp managing pressure buildup, a
high-intensity main pulse driving rapid implosion, and an
optional tail sustaining pressure (Figure 1). Designing effective LPs is difficult due to the complex
interplay between laser delivery and implosion physics, typically demanding costly simulations and
weeks of manual tuning or Bayesian optimization methods [5, 6, 2, 10]. To address this bottleneck, we
introduce the Laser Pulse Shape Design System (LPDS), a machine learning–based inverse modeling
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framework that generates LPs from target implosion outcomes. LPDS combines auto-regressive
generative models with auxiliary objectives for outcome alignment, a physics-informed loss for
feasibility, and conditioning mechanisms for fine-grained control, enabling data-driven LP design.

2 Laser Pulse Shape Design System

Picket editing

Foot width 
editing

a. Pulse Generation b. Pulse Editing/Constraining c. Pulse Inpainting 

Figure 2: LPDS supports: (a) generation of diverse pulse shapes achiev-
ing desired fusion outcomes, (b) constraint-based editing of specific pulse
features, and c) Inpainting specific regions of the LP.

We present the Laser Pulse
Shape Design System (LPDS)
- an inverse modeling frame-
work to generate LPs in ICF.
LPDS takes desired implosion
outcomes and target pellet pa-
rameters as input, aiming to gen-
erate LPs that achieve specified
fusion objectives while honoring
physical constraints.

2.1 Inverse Modeling

Let m = LILAC(l,p) denote
the vector of implosion outcomes produced by the LILAC [3, 4, 7] ICF simulator for a given
LP (l) and target pellet parameters (p). These outcomes include quantities such as energy yield, areal
density, burn width, and ion temperature. The pellet parameters are defined by attributes such as outer
radius, ice thickness, ablator thickness, ice-tritium fraction, etc. To construct an inverse design model,
we first generate a dataset DF = {(li,pi,mi)}Ii=1 of 1 Million examples via systematic simulation
sweeps, capturing the relationship between pulse shapes, target parameters, and resulting implosion
outcomes. The LP li is characterized as a real-valued sequence of length 256. pi,mi are real-valued
vectors of size 5 and 12, respectively. Our goal is to learn a data-driven inverse mapping Gθ that
designs a feasible LP l′ given desired implosion outcomes m and pellet parameters p:

l′ = Gθ(m,p). (1)

This inverse design problem has multiple plausible solutions, since multiple pulse shapes can lead to
similar outcomes. To address this, we consider two modeling approaches - generative and predictive.
Auto-regressive generative models are trained to generate from a distribution of valid LPs, thereby
providing diversity and robustness, and predictive auto-regressive models to predict a single high-
fidelity LP.

2.2 Auto-regressive Model

LP design can be formulated auto-regressively, generating the pulse vector l = {l1, l2, . . . , lT }
sequentially. For the first timestep, since no past lt values are available, the model instead conditions
on an initialization vector constructed by applying linear transformations to both the target parameters
p and the desired outcomes m (see Figure 3). This embedding serves as the initial conditioning input
for the auto-regressive model. We explore two paradigms of modeling for the auto-regressive models
- predictive and generative. The predictive models try to reconstruct the ground-truth LP with high
fidelity. The generative models trade-off between reconstruction fidelity and the ability to provide
diverse LP candidates. The training objective for the predictive auto-regressive models is the mini-
mization of the mean squared error between the predicted and true pulse values across all time-steps.
The generative models output a probability distribution over the LP value at time t called pθ(lt). The
training objective for the generative auto-regressive models is to minimize the negative log-likelihood
of the true pulse under the predicted distribution pθ(lt): L(θ) = 1

T

∑T
t=1 log pθ(lt|l1...t,m,p) .

We explore 3 different modeling techniques for pθ. The simplest technique is to model this as a
Gaussian distribution where the model Gθ learns to predict the mean and variance. To offer more
expressiveness, we also model pθ as a weighted mixture of K Gaussians. Here, the model learns to
predict K-length vectors for mean, variance and the mixing weights. We also try a discrete approach
where the pulse l is quantized to 128 discrete values and pθ is modeled as a Categorical distribution
and trained with a cross-entropy loss.
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2.3 Auxiliary Objectives and Physics-Informed Loss

While the reconstruction objective enables LP reproduction, our broader goal is scientific exploration
through plausible, diverse LP generation consistent with implosion outcomes. This provides a wider
array of selectable, high-performing candidates and facilitates scientific discovery by potentially
identifying novel LP configurations. To achieve this, we introduce an auxiliary objective that guides
the inverse model to prioritize implosion fidelity and robustness over exact replication.
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Reconstruction 
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(Target Pellet)
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Figure 3: Training setup for LPDS. The
loss term is comprised of multiple terms de-
scribed in Section 2.3

.

We train a surrogate model3 Sϕ to approximate the LILAC
simulator. This model learns the mapping from a LP l and
target parameters p to the corresponding implosion out-
comes m. This can be represented as m̂ = Sϕ(l,p),
where ϕ represents the learnable parameters of the sur-
rogate model. The surrogate is trained on the simu-
lation dataset DF by minimizing the prediction error:
LILACsurrogate(ϕ) = E(l,m,p)∼DF

[
∥m− Sϕ(l,p)∥2

]
.

After training, Sϕ is kept frozen and is used during train-
ing of the inverse model to evaluate the physical fidelity of
generated LPs. Given a generated pulse l′ = Gθ(m,p),
the surrogate model predicts the corresponding outcomes
m̂ = Sϕ(l

′,p), which are then compared to the target
outcomes m. Our new objective can be defined as:

G(θ) = λLL(θ) + S(θ) (2)

S(θ) = El′∼Gθ,(m,p)∼DF

[
∥m− Sϕ(l

′,p)∥2
]

(3)

Here, λL controls the trade-off between faithfully reconstructing the original LP and generating
physically consistent alternatives. A properly tuned λL allows the model to generalize beyond pure
reconstruction, producing diverse yet plausible LPs tailored to the specified design goals. In practice,
we first train only on the reconstruction loss L(θ) since at the beginning of training Gθ can produce
LPs that are incoherent and out-of-distribution for Sϕ.

Physics-informed loss: While our goal is to generate a diverse set of LPs for a given target configu-
ration, the practical utility of these designs depends critically on their adherence to the fundamental
physics of ICF and their feasibility under real-world experimental constraints. One essential con-
straint is energy conservation. Specifically, generated LPs should not exceed the total energy budget
of corresponding reference pulses. To enforce this, we introduce a physics-based penalty term:

P(θ) = El′∼Gθ,l∼DF

[(∫ T

0
l′(t) dt−

∫ T

0
l(t) dt

)+
]

. This term penalizes excess energy, encourag-

ing designs within experimental and physical limits. Incorporating this constraint into our overall
loss function, we define the complete training objective as: G(θ) = λLL(θ) + λSS(θ) + λPP(θ),
where λP and λS are hyper-parameters that control the relative importance of each loss term in the
overall objective.

3 Experiments

To evaluate our approach, we compare LPDS variants: a predictive auto-regressive Transformer [11]
(LPDSTransformer), and an LSTM-based [8] model (LPDSLSTM). The generative auto-regressive mod-
els (as described in Section 2.2) are based on the LSTM architecture and are named LPDSGaussianAR,
LPDSMixtureOfGaussianAR and LPDSDiscreteAR. Additionally, we evaluate ablated versions excluding
the auxiliary loss S(θ) (w/o S) and the physics-informed loss (w/o P).

We assess performance on four key metrics: implosion outcomes m error, reconstruction error,
generation diversity, and energy conservation error. All models are evaluated over R = 10 random
seeds. The implosion outcomes m error is computed via the surrogate loss (Equation 3) and
reported as mean absolute percentage error. Reconstruction error is the L2 distance between the
generated and ground-truth pulse. Energy conservation is calculated in terms of percentage as:

3The surrogate achieves an error of 1.4% across the implosion outcomes m. This can be considered as a
lower bound on the implosion error that can be achieved by LPDS.

3



1
E

∑E
e=1

1
R

∑R
r=1

(
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0

l′,e,r(j) dj−
∫ J
0

le(j) dj)∫ J
0

le(j) dj
× 100. Diversity is measured by average pairwise L2

distance across generated samples. The estimated upper bound for diversity is 1.9, which is the
diversity value obtained when comparing randomly selected LPs from DFtest .

Approach Diversity ↑ m Error ↓ Reconstruction Error ↓ Energy Conservation ↓
LPDSLSTM – 1.65% 0.0001 0.66%
LPDSTransformer – 1.94% 0.0008 0.95%
LPDSGaussianAR 0.42 1.89%± 0.01 0.0005± 2e−5 0.58%± 0.004
LPDSMixtureOfGaussianAR 0.56 1.95%± 0.09 0.0006± 8e−5 1.58%± 0.006
LPDSCategoricalAR 0.39 2.01%± 0.04 0.0009± 5e−5 1.18%± 0.08
LPDSLSTM, w/o S – 3.9% 0.0004 0.69%
LPDSTransformer, w/o S − 4.4% 0.001 1.23%
LPDSLSTM, w/o P – 1.85% 0.0001 0.95%
LPDSTransformer, w/o P – 2.1% 0.0009 1.3%

Table 1: LPDS model performance. ± denotes standard deviation over seeds. For the
predictive auto-regressive models (LPDSLSTM, LPDSTransformer), diversity is not defined
since they are deterministic.

The evaluation
results in Table 1
highlight the
effectiveness of
LPDS. The auto-
regressive model
LPDSLSTM,
achieves the
highest recon-
struction fidelity,
accurately repli-
cating original
LPs. Among the
generative variants, LPDSMixtureOfGaussians offers the most diversity across samples due to better
expressiveness of the multi-Gaussian distribution. Both techniques achieve less than 2% error in
the desired implosion outcomes (m-Error). Refer Appendix Section B for example pulse shapes
generated by the models.

4 Pulse Shape Constrained Design

In many ICF experimental design scenarios, scientists require control over specific regions or attributes
of the LP. A differentiable mapping function M (details in Appendix) is used to project an LP l onto
M = 12 parameters C = M(l) = {c1, . . . , c12}. Each cm corresponds to a physically interpretable
property of the LP (Figure 1). When constructing new designs, scientists fix one or two of these
values within C, while allowing the remaining parameters, and thus the shape of the pulse, to vary.
However, our current inverse model Gθ lacks a mechanism to enforce such partial constraints during
inference. We use two different methods to add controllability -

Gradient-Based Adaptation: The LP can be adapted at post-design without additional finetuning.
To honor constraints in C while maintaining desired implosion outcomes, a loss combining the pulse
constraining loss J (θ) = El′,cm

[
∥cml′ − cm∥2

]
and the LILAC surrogate loss S(θ) (Equation 3) is

formulated. Since both the losses are differentiable w.r.t the pulse l′ (now referred to as J (l′), S(l′)),
we minimize the following loss by adapting the LP with gradient descent - T (l′) = S(l′) + λJJ (l′).
We focus our evaluation on two physically meaningful parameters: picket power and foot power (see
Figure 1). To quantify adaptation accuracy, we get an mean absolute percentage error (MAPE) of
2.5% between the specified constraint value and the corresponding value extracted from the generated
pulse l′ (m−Error remains unaffected).

Inpainting/Prompting: For additional controllability, we support inpainting-based generation
(Figure 2c), enabling scientists to specify desired LP design directly in the LP space. Rather than
conditioning on the C constraining parameters, users can provide a partial LP such as prefixes or fixed
regions. For the auto-regressive models, providing a LP prefix is akin to prompting it to complete the
rest of the pulse. A prefix comprising 10% of the pulse (this corresponds to the first peak) is provided
as the prompt. We get a reconstruction error of 0.0003 and m−Error of 1.55%.

5 Conclusion

We introduced LPDS, a data-driven inverse modeling framework for generating diverse ICF laser
pulse shapes satisfying scientist-defined objectives and physical constraints. LPDS has the potential
to significantly advance ICF research, bringing us closer to realizing virtually limitless clean energy,
a breakthrough with profound environmental and societal implications.
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Appendix

A Experimental Details

Num of layers 4
Number of hidden units 512
Learning rate 1e−5

Batch size 128
Table 2: Network Hyperparameters used in the LSTM auto-regressive model.

Num of layers 4
Dmodel 256
Dfeedforward 512
Num. attention heads 16
Learning rate 1e−5

Batch size 128
Table 3: Network Hyperparameters used in the Transformer model.

λL 0.5
λP 0.25
λE 0.25

Table 4: Hyperparameters used for our inverse model loss function G(θ).

A.1 LILAC surrogate

The LILAC surrogate (Sϕ) is a MLP with the following hyper-params. It is trained with the Adam
optimizer [9], with a batch size of 128, learning rate of 1e−5 for 100 epochs.

Num. of layers 4
Num. of hidden units 256
Activation function ReLU

Table 5: Hyperparameters used for the LILAC surrogate Sϕ

The surrogate has an average error of 1.4% across all the outputs.

A.2 Mapping Function

The mapping function (M) is a 1 layer bidirectional LSTM with 64 hidden units. We concatenate
the hidden state from both directions, before passing it through an output linear layer. It is trained
with the Adam optimizer, with a batch size of 64, learning rate of 1e−5 for 250 epochs. The model
achieves an average error of 1.1% across all 12 parameters in C

B Example Pulse Shape Generation

We present some of the pulses generated by the different approaches.
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Figure 4: LPs generated by LPDSLSTM model
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Figure 5: LPs generated by the LPDSTransformer model
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Figure 6: LPs generated by LPDSGaussianAR model
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Figure 7: LPs generated by the LPDSMixtureofGaussianAR model
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Figure 8: LPs generated by the model when doing inpainting using LPDSLSTM.
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