Emulating Climate Across Scales with
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Oct 30, 2025

A2



Downstream Application: Downscaling
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Downstream Application: Downscaling
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Deterministic vs Stochastic power spectra

Spherical Power Spectrum of Surface precipitation rate Histogram
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Promising climate results on c96-shield

Spherical Power Spectrum of Precipitation

e Our base configuration worked well off the bat for
C96 - AMIP data
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e Thisdatasetis fairly large, and has less small-scale .
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What did we do?



Conditional SFNO Architecture
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Training

t+6hr t+12hr t+(n-1)*6hr t+n*6hr

Truncated Backpropagation
n € [1, 20]

— Stochastic Prediction

Initial training has n=1, then we fine-tune for up to 20 steps



Loss Function

“Almost fair” CRPS combined with reweighted energy score.

Energy score weighting set to give similar magnitude to CRPS, and independence from domain size.
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Take-away points

e We have a successful strategy for fine-tuning a model usable for downscaling
e Optimizing over longer rollouts improves climate skill

e Optimizing spectral coefficients via energy score corrects small-scale spectral power
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