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Abstract

Estimating local impacts of climate change is critical for informing adaptation
methods. The ACE2 climate emulator successfully reproduces changes in histori-
cally observed climate, but poorly represents variability of key variables, such as
surface precipitation, at small scales. We demonstrate that by adapting ACE2 to
use conditional layer normalization and conditioning on isotropic Gaussian noise
with a probabilistic loss function, we can successfully reproduce these small-scale
features. This is a crucial step towards the goal of applying climate emulator
predictions to inform real-world decisions.

1 Introduction

Climate models are typically run at resolutions too coarse to resolve local impacts from climate
change needed to inform adaptation strategies. Downscaling, using both numerical and statistical
methods, is often used to bridge this gap (e.g., [12]). Statistical downscaling techniques require
accurate coarse model fields at the grid-scale or use debiasing techniques to achieve such accuracy.
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Figure 1: One-step change in upper layer air temperature, comparing the deterministic ACE2 model
against the stochastic Conditional SFNO model.

Computationally efficient machine learning-based climate models (e.g., [10, 11, 5]) are becoming
an attractive starting point for downscaling. However, like machine learning-based weather models
that are deterministically trained, they suffer from spectral bias [4] in which grid-scale variability is
overly smooth and underestimates extremes. This is exacerbated by training over multiple roll-out
steps, which might otherwise benefit climate skill.

To make the ACE2 climate emulator [11] a more attractive starting point for downscaling applications,
here we adapt ACE2 for use as a stochastic model using a combined nodal Continuous Ranked
Probability Score (CRPS) and spectral energy score loss. With this approach, we update our training
strategy to allow for multiple-timestep optimization, producing outputs with accurate small-scale
spectral power, improved weather extremes and climate variability.

2 Results

We evaluate our stochastic adaptation of ACE2 on an 81-year AMIP-style simulation using GFDL’s
SHiELD model with prescribed SSTs as the reference dataset. Modifications to ACE2’s architecture
and training are described in Section 3.

The one-step evolution of variables such as the air temperature in the uppermost atmospheric layer
(Figure 1) are oversmoothed in the deterministic model, but this is much improved by the stochastic
model, without grid artifacting as seen in [1].

This improvement can be quantified using a spherical power spectrum, shown for surface precipitation
in the left panel of Figure 2, after averaging over all rollout steps of the 81-year AMIP simulation.
Surface precipitation has substantial grid-scale variability, corresponding to the highest wavenumbers
in the plot. At the smallest scales, ACE2 shows a 65% reduction in spectral power over the inference
period, while the Conditional SFNO model has a reduction of only 4%. This drastic improvement
is achieved without the use of filters for small-scale features. Instead, accurate small-scale spectral
power is encouraged by the energy score loss on spectral coefficients, described in Section 3.

The right panel of Figure 2 shows that the frequency of extreme 6-hourly gridpoint precipitation is
also more accurately modeled. This improvement comes without sacrificing accurate time-mean
climatology; the stochastic version of ACE reduces the time-mean precipitation bias from 0.32 to
0.11 mm/day (Figure 5).

The stochastic architecture also improves inter-annual variability. Near-surface air temperature and
total water path are sensitive to year-to-year changes in ocean temperatures and to long-term trends
in greenhouse gas concentrations. In deterministic ACE, their inter-annual variability is somewhat
muted compared to the reference physics-based SHiELD simulation (Figure 3). Over 60% of this
deficit in ocean-forced variability is recovered in stochastic ACE.

The inference speed of this CRPS-based model is comparable to the original deterministic model.
While training requires twice as much data processing per training example due to the need for two
ensemble members, this is mitigated both by using a single forward step in our pre-training phase,
and by using a batch size of 8 instead of 16, as we see only slightly more reduction of loss per batch
with the larger batch size.
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Figure 2: Comparison of the spherical power spectrum (left panel) and histogram (right panel) of
6-hourly total precipitation during the 81-year AMIP simulations. Target is the reference SHiELD
AMIP simulation.
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Figure 3: Global and annual-mean timeseries for 2-meter air temperature (left) and total water path
over the 81-year AMIP simulations. The SHiELD model (target) is plotted in black for reference.
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Figure 4: Training dynamics of ACE2 compared with Conditional SFNO pre-training and fine-tuning,
and a "direct" version using the fine-tuning configuration but with the pre-training initialization and
learning rate. Note the loss values are not directly comparable between runs, as each curve uses a
different loss. In particular, due to a bug the validation loss is always reported for 1-step CRPS. For
curves with both light and heavy lines, the heavy line corresponds to the moving median of the full
data.
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During training for ACE2, climate inference skill is significantly non-monotonic (Figure 4). We find
the stochastic model, particularly when using longer lead times, shows more consistent decreases
of inference error with additional training, though epoch-to-epoch variability in mean climate is
significant.

3 Model and training

The Conditional SFNO model is based on ACE2 [11] which uses Spherical Fourier Neural Operators
[2] and includes architectural constraints to ensure conservation of dry air mass and moisture. We have
modified the neural network to use conditional layer normalization instead of instance normalization,
allowing us to condition model predictions on 64 isotropic Gaussian white noise channels, produced
as in [9]. This normalizes features across the channel domain independently for each column, instead
of independently across the horizontal domain as in [10] and [11]. This strategy has been applied in
FGNs [1], although they use nodal Gaussian noise and produce excess spectral power at small scales.

Our loss function is a combined nodal CRPS and spectral energy score, similar to the one used by
the stochastic NeuralGCM [7] but without a maximum cut-off wavenumber, without area weighting
for the nodal component, and using "almost fair" CRPS for the nodal component [8] with α = 0.95.
The spectral energy score treats complex spectral components as values in R2 and is a "fair" score.
We scale the energy score by an empirical factor of (2

√
nlnm)−1, where nl and nm are the number

of l and m-values in the spectral space, to grant similar magnitude to the CRPS when evaluated on
Gaussian-distributed random variables, regardless of domain size. Following this, we choose weights
of 0.1 on the nodal CRPS and 0.9 on the spectral energy score. We must include some degree of
nodal CRPS as the latitude-longitude model grid includes significantly more points than are resolved
in spectral space, especially near the poles. Losses are computed on variables normalized as in [11],
without additional per-variable weights.

The model loss is computed for a single timestep using a batch size of 8, and an ensemble size of 2.
First, the model is pretrained for a single forward step over 120 epochs with a constant learning rate
of 10−4. This provides initial weights for a long-rollout fine-tuning phase using a learning rate of
10−5 over 30 epochs. In each phase, an AdamW optimizer with weight decay of 0.01 is used, taking
also the EMA of the weights with a decay of 0.999. During fine-tuning, we augment the training
data using autoregressive model output by randomly selecting 1 step, 2 steps, 4 steps, 12 steps, or 20
steps for each batch, with probabilities of 60%, 20%, 10%, 5%, and 5% respectively, spanning from
6 hours to 5 days. We auto-regress the model over this window, but backpropagate and optimize the
model prediction over only the final 6-hour timestep, noting this means the two ensemble members
have different initial conditions for the final timestep. This is more computationally efficient than
backpropagating through the entire window, which would risk biasing the training of the one-step
prediction problem by including correlated samples in each batch.

Note that while the ACE model shares roots with FourCastNet, the Conditional SFNO and changes
made to training methodology here are distinct from FourCastNet 3 [3], aside from the use of SFNO
blocks [2].

4 Sensitivities

Due to constrained computational resources, most aspects of the model configuration were chosen
with minimal sensitivity testing. Using nodal CRPS alone for the loss function produced poor results,
with excessive small-scale variability similar to [8]. We did not attempt using fair CRPS or different
weightings for the nodal and spectral losses.

We pre-trained for the number of epochs used in [11]. The number of forward steps and associated
probabilities were only compared against 2-step schemes. We found pre-training and fine-tuning
using a sum of errors over 2 steps, as in [11], led to increased inference error with longer fine-tuning.

We tested conditioning on non-isotropic Gaussian noise uncorrelated between Gaussian grid points.
This led to uncorrelated noise-like small-scale variability in polar regions. While this variability is not
represented in spectral power, did not accumulate, and did not cause large errors, isotropic Gaussian
noise is a more natural, grid-independent choice.
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We did not do any hyperparameter optimization, choosing the values as in [11]. We chose a fine-
tuning learning rate a factor of 10 smaller than the initial learning rate. The noise channel count of 64
was chosen based on values that worked well using a different dataset and training scheme, but are
unoptimized for this dataset and training scheme.

5 Conclusions

We have modified ACE2 to make stochastic predictions using a Conditional SFNO architecture. We
trained it using a combined nodal CRPS and spectral energy score loss on one-step predictions at
various lead times, using a pre-training and fine-tuning strategy. These changes greatly improved grid-
scale variability in important fields like surface precipitation, facilitating downscaling of emulator
ML output. Stochastic ACE also improves the inter-annual variability in an AMIP-forced simulation,
while time-mean biases in all predicted variables are either unchanged or slightly reduced, with the
exception of stratospheric moisture (see Appendix B).

The use of an energy score loss on complex spectral coefficients was crucial for the improvement in
small-scale variability without introducing excess spectral power. We also saw a noted improvement to
training dynamics when using single-step losses while training on longer lead times. This strategy has
allowed us to optimize using relatively long lead times of up to 5 days. With sufficient computational
power and careful memory management, this could be extended to train on arbitrarily long lead times.

We expect these improvements to be impactful for future work in both downscaling of emulator
outputs and improving emulator climate. While here we have shown results on an AMIP-style
simulation, the same approach may be applied to reanalysis data. The stochastic training approach
enables training at longer lead times without degrading model outputs, and may be applicable to
longer rollout steps or variable timesteps. Unlike ACE2, we are able to improve weather skill through
longer training without worsening the produced climate, creating a pathway for a seamless model
which can perform competitively from medium-range weather forecasting to climate time-scales.
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Appendix

A Loss Function

Note that CRPS [6] is given by

CRPS(F, y) = EX∼F [ |X − y| ] − 1
2 EX,X′∼F [ |X −X ′| ] .

where F is the function being scored and y ∈ R is a true sample.

"almost fair" CRPS [8] is given by

afCRPSα,M (F, y) = EX∼F [ |X − y| ] − (1− 1− α

M
) 12 EX,X′∼F [ |X −X ′| ] .

Where α is a chosen parameter, and M is the size of the ensemble.

Energy score [6] is given by

ES(F, y⃗) = EX⃗∼F

[
∥X⃗ − y⃗∥

]
− 1

2 EX⃗,X⃗′∼F

[
∥X⃗ − X⃗ ′∥

]
and is defined for y ∈ Rn.

Our loss function is given by

L(F, y) = 0.1 · afCRPS0.95,2(F, y) + 0.9 · 2
√
nlnm

ES(SHT ◦ F,SHT(y))

where SHT is the spherical harmonic transform, with its complex-valued outputs treated as vectors in
R2, and expected values are calculated with an ensemble size of 2. When taking the expected value
we take the average among columns on the globe without area weighting. In our case, the size of the
spectral domain is related to the physical domain by nl = nlat and nm = 1

2nlon + 1 (as the spectral
domain is constrained to correspond to real values), and that nlon = 2nlat.

B Climate skill

We evaluate the stochastic Conditional SFNO and compare it to ACE2 using the full 81-year period
from 1940-2021. Each model starts on January 1st, 1940 and is autoregressively run for the 81
years forced with the same CO2, sea-surface temperature, and sea-ice fraction values. We compared
the time-mean fields of both machine learning-based emulators to the SHiELD AMIP climatology
(Figure 5). For most variables, with the exception of specific total water level 0, the conditional
stochastic model performs on par or better than the baseline ACE2.

C Additional Histograms

We show additional power spectrum and histogram figures for select variables (Figures 6 - 10)
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Figure 5: Comparison between ACE2 (blue) and the fine-tuned stochastic Conditional SFNO (orange)
for the root-mean-squared error (RMSE) of the area-weighted time-mean fields for select variables.
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Figure 6: Same as Figure 2 for air temperature at level 1.
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Figure 7: Same as Figure 2 for geopotential at 500 hPa.
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Figure 8: Same as Figure 2 for latent heat flux at the surface.
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Figure 9: Same as Figure 2 for 2m temperature.
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Figure 10: Same as Figure 2 for upward longwave radiation at the top of the atmosphere (TOA)
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