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Ocean modeling & ‘spin-up’ - Overview

Spin-up at IPSL
Challenge: To initialise an ocean model, it is needed to perform a spin-up (initialization phase reach
stable phase). This implies a high initial computational costs for ocean modeling.

2.5M cpu-hours/year

LY
ZQZ Use generative models to learn the distribution of initial ocean states and accelerate the initialization phase.
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How can we ensure the the
Evaluation and generated states respect the

comparison of the laws of physics?
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Figure: Pipeline of the training and evaluation protocol.

Ocean simulation (10 years )
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How to condition a generative model?

We want to enforce a constraint on vertical stratification

Training Sampling
= f(x, n)dt + g(t)dw G

X1 =X, + 7,V 1ogpx)dt ++/2te, €, ~ N(0,I)

Forward

Backward

dx = [f(x,1) — g*(1) V,log p(x)]dt + g(t)dw

PV, Cx)
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The model learns the distribution of the
ocean initialization states.

Constraint enforced during sampling process of the model
through Langevin sampling algorithm.
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How to define the constraint and how to sample?

Constraint selection: Sampling algorithm:
Densjty: Interpretable by.oceanographers e Dty et ___ From algorithm proposed in Chamon et al. [1], we rewrite the
and linked to ocean physical properties TSeeeeen ) constrained sampling problem as an optimisation problem :
Problem
Forx =(7,98): . C )
minimize Dy, (¢qllp) subjectto E,  [C(x)] =0
ooooo . ge€P,(RY)
, .2 y With Dy, divergence de Kullback-Leibler, p the learned
K | ® . . . . .
distribution, C our constraint function
= {x: w0 =Y fimry Let0| =0} -
k=0 ij
\ S The is performed with a primal gradient descent alternated by a dual
ascent.
e ( \2
€, = {x; Cw) =) | Vim—= D Vir 0| = 0} (Primal—dual resolution )
k=0 \ l,] )
Fors € {0,..,5}:
Density is computed with the approximation from Primal update: x,_, = x, — 7, Vx 3()68, ,1S) + 2TS e, €~ H(0,1)

Roquet et al. [4] used for DINO.
Dual update: A, =4,+1nV,Z(x,4,)
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Results: Generated ocean states

Qualitative evaluation of the generated states: We compare the generated states with a dataset extracted from DINO ocean model
simulations [2].

a) data at surface b) C1 at surface c) CZ at surface d) data at 340 m e) C 1at340m
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Figure: Temperature and salinity fields at surface and at 340m deep

- Presence of large scale characteristic features in the 1000
temperature and salinity fields.
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- Validation of the vertical density profiles for constrained
generation. 3000-
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- Uplifting of Antarctic dense water around -60/-70° only latitude [degrees_north] latitude [degrees_north]

present in constrained case. Figure: zonal average representation of the density vs depth
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Results: Integration into ocean model

Results of a 10-years integration of the generated states into the oceanographic model (DINO)
Figure: zonal average representation of the density vs depth after integration
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Table: mean point-by-point variability of the generated states
- The final state is influenced by initial state. No Constraint Constraint TS Constraint C1 Constraint C2
| | - L Salinity 0.2132 0.0095 0.0105 0.0126
- A 10-years simulation do not correct initial stratification errors. Temperature 0.0859 0.3178 0.4156 0.6326

- Low evolution of the constrained generation during DINO

integration. Close to equilibrium state? The diversity of the generated states is increased by the new

constraint implemented.
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Thank you !
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