
Physically consistent sampling for ocean 
model initialization

• OGCMs are critical for climate science but are computationally expensive, 
particularly during spin-up phases requiring millions of CPU hours. This high 
computational costs limit parameter exploration and ensemble simulations 
crucial for uncertainty quantification. 

• Diffusion models are a class of generative AI models that learn to produce 
realistic data by reversing a noise-adding process, enabling fast and accurate 
emulation of complex physical systems. However, we show that diffusion 
models, even when trained on valid physical data, don't necessarily respect 
physical constraints when generating new states, introducing the need for 
physical regularization.

Using a primal–dual decomposition, the optimization is performed through a 
gradient descent–ascent scheme [1] at each step  of the sampling process: 

 

with the resulting Lagrangian potential defined as .

s

Primal update: xs+1 = xs ∥ τs −x∇(xs, λs) + 2τs ϵ, ϵ ℒ ∼(0,1),
Dual update: λs+1 = λs + η−λ∇(xs, λs) .

∇(x, λ) = log p(x) + λTC(x)

Constrain with improved Langevin sampling:

• Diffusion models can generate physically consistent oceanic states that are 
usable as initial conditions for numerical integration. 

     
• Computational costs: 
        (a) Numerical integration :  CPU-hours 
        (b) Diffusion model: 48 h for training + 30s / state generation (on V100 GPU)
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• The generated temperature and salinity fields successfully capture large-scale 
patterns, including warm, saline waters in the tropics and cooler, fresher waters 
at higher latitudes, while maintaining coherent vertical relationships between 
different depth levels.

Figure: Pipeline of the training and evaluation protocol.
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Given a constraint function  defined over our fields, we 
formulate our problem as a minimization task: 

 

With  is the Kullback-Leibler divergence between  (sampling 

distribution subject to constraint ) and  ( target distribution learned from data). 

C(x) : 𝒩ZℝWℝH × 𝒩

minimize
q→∈2(𝒩d)

DKL(q𝒫p) subject to 𝔼q[C(x)] = 0,

DKL(q𝒫p) q
C p

Vertical stratification constraint:

We constrain the hydrostatic balance of our fields through two constraints on 
ocean density  to fit the expected mean ocean density profile : ρ(S, T ) μ

C1(x) = | |μ∥ 1
N ∑

i,j
ρ(xi,j) | |2

2 ; C2(x) = | |−k μ∥ 1
N ∑

i,j
−k ρ(xi,j) | |2
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Dataset: Generated from the DINO configuration. [2] It uses a mercator grid with 
1/4 horizontal resolution and 36 vertical levels. The domain spans 60° longitude 
and 70° latitude from equator to both poles. For this study, we generated a 
dataset by running DINO for 50 years, saving 1800 snapshots of temperature and 
salinity fields. The resulting dataset consists of 1800 states, each containing three 
fields (SSH, T,S). • The density profiles below are computed through 10 years of NEMO integration. 

The results show minimal changes over the period of integration both on the 
zonal average and on the mean density profile at low latitudes.  

• The generation without constraint still underestimates the uplifting of Antarctic 
dense water around -60/-70°, a key aspect in the formation of this water mass, 
whereas the constrained generation is able to resolve this physical property.

Physical consistency of the generated fields:

 Figure: Temperature and salinity fields at surface and at 340m deep

• The density profiles above further validate that both constraints allow the model 
to captures the overall stratification structure of the global ocean in particular 
near the surface unlike the unconstrained case. 

 Figure: Mean point-by-point variability for T and S fields

 Figure: zonal average representation of the density vs depth after 
integration
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 Figure: zonal average representation of the density vs depth

Quality of the generated states:

• The proposed constraint allows for 
more variability in the generated 
states than previous constraint 
implemented in Meunier et al. [3]


