

Understanding Ice Crystal Habit Diversity with Self-Supervised Learning

Joseph Ko¹, Hariprasath Govindarajan^{2,3}, Fredrik Lindsten³, Vanessa Przybylo⁴, Kara Sulia⁴, Marcus van Lier-Walqui¹, Kara D. Lamb¹

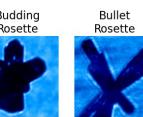
¹Columbia University, ²Qualcomm Auto Ltd Sweden Filial, ³Linköping University, ⁴University at Albany

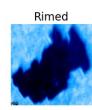
Clouds are a leading source of climate uncertainty

Below: Cirrus clouds have a wispy, feathery look.

Aggregate

Budding Rosette

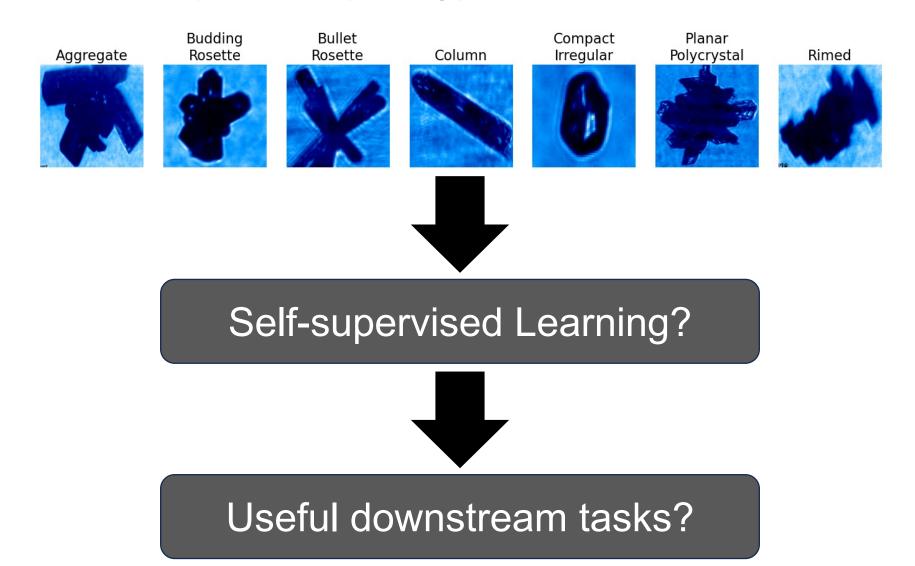




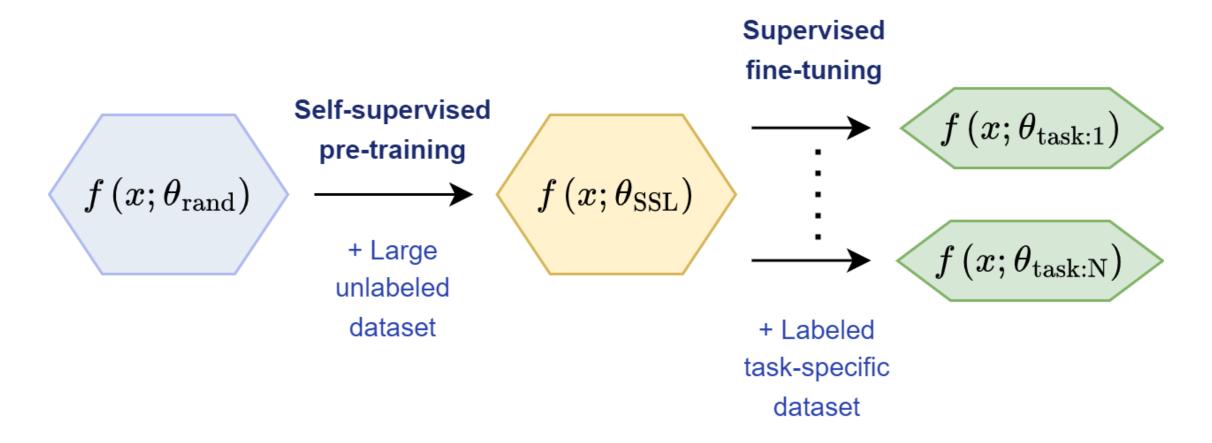
Above: Examples of different ice crystal habits. These images are taken with an in situ imaging probe (CPI) mounted on aircrafts

- Cirrus clouds are high-altitude clouds composed of ice crystals
- Ice crystals come in many different habits (i.e., shapes) that are difficult to represent realistically in climate models
- Ice habit impacts microphysical processes at the particle level, impacting the evolution and distribution of cirrus clouds

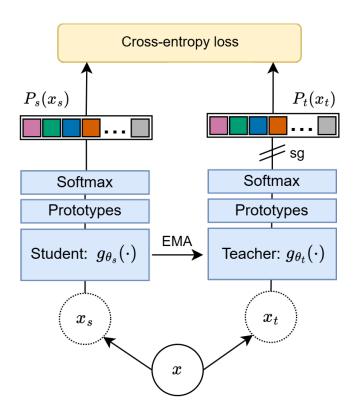
Given millions of crystal images, can we use selfsupervised learning to learn robust representations of crystal morphology without labels?



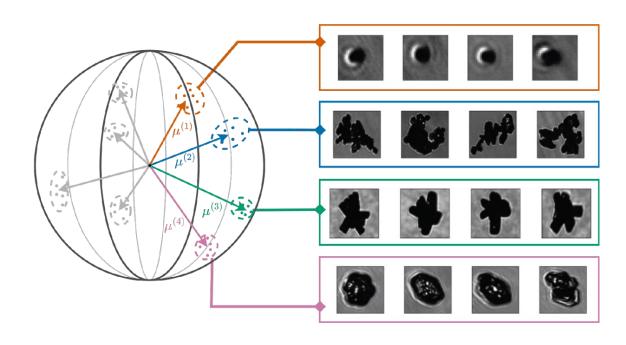
Self-supervised learning (SSL) utilizes large unlabeled datasets to pre-train a model that can then be utilized for various downstream tasks.



Teacher-student self-distillation method used for pre-training



- iBOT-vMF method¹ is used for pre-training
- Small vision transformer used as backbone
- Student and teacher models output probability distributions over K pseudo-classes



The von Mises-Fischer (vMF) modifications¹ encourages the model to learn distributions of representations on a unit hypersphere.

Representations were validated with a smaller subset of labeled data (CPI-21K)

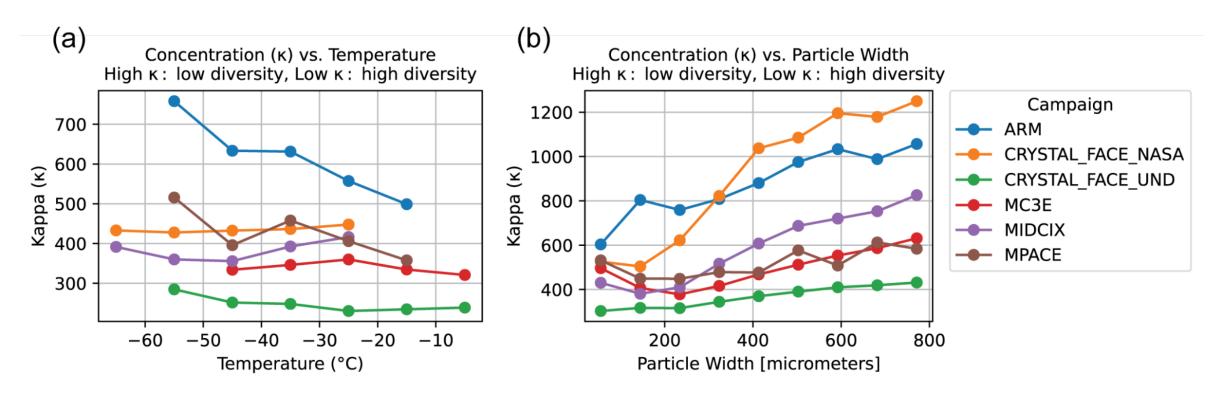
Dataset Name	Description		
CPI-3M	~3 million unlabeled CPI images		
CPI-21K	Hand-labeled subset of ~21K CPI images		
CPI-ENV-500K	~500K CPI images w/ corresponding environmental data		
CPI-H-1M	A subset of 1 million CPI images after curation (using hierarchical clustering)		

Dataset description: details of various datasets used in our study

SSL Method	Pre-training dataset	Pre-training epochs	Weight initialization	Top-1 Accuracy (%)	
				kNN	Logistic
DINOv3	LVD-1689M	1000	X	74.83	81.83
iBOT	ImageNet	800	×	78.33	82.00
iBOT-vMF	CPI-3M	100	×	75.05	81.00
iBOT-vMF	CPI-H-1M	100	×	77.67	83.17
iBOT-vMF	CPI-H-1M	10	✓	81.56	84.39

Model validation results: The top-1 accuracy from kNN and Logistic Regressions are used as baseline metrics to evaluate learned representations. The best model (bolded) used ImageNet pre-trained weights and subsequent pre-training on curated CPI data (CPI-H-1M).

Learned representations can be leveraged to quantify crystal diversity as a function of key variables



Crystal diversity is quantified with κ , a scalar concentration parameter for vMF distributions.

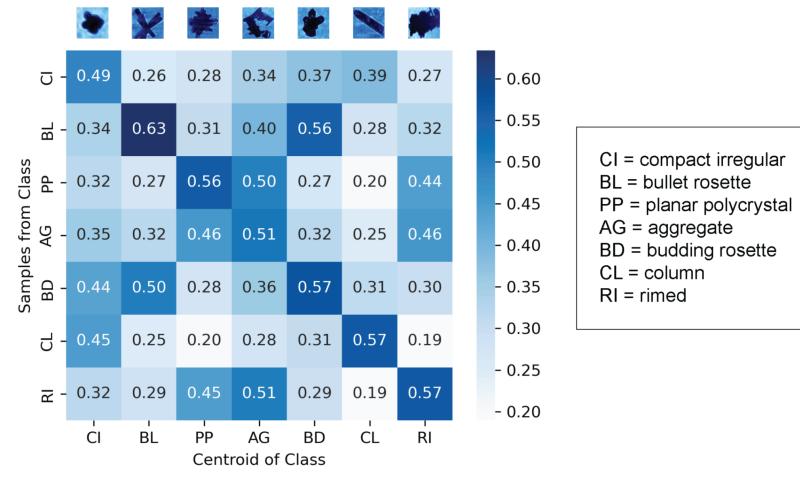
- (a) Diversity generally *increases* as temperature increases.
- (b) Diversity generally decreases as ice particle size increases.

The line colors correspond to different campaigns.

Representations can be used to explore similarities within and between classes

Matrix showing mean **cosine similarity** values for different habit clusters, using the labeled CPI-21K dataset.

The matrix expresses *intra-cluster* (within cluster) diversity along the diagonal and *inter-cluster* (between different clusters) similarity on the offaxis cells.



Conclusion & Future Work

Contact: Joseph Ko jk4730@columbia.edu

Main points:

- Robust crystal representations were efficiently learned using a self-supervised vision transformer
- Trends in crystal diversity were explored using learned representations
- Intra-cluster and inter-cluster similarities were quantified using a hand-labeled subset of data

Future work will include additional downstream scientific applications e.g.,

- Utilize embeddings for anomaly detection to identify rare crystals and potentially uncover new crystal formation mechanisms
- Dive deeper into the relationship between ice morphology and environmental conditions (both instantaneous and historical)

Link to paper: https://doi.org/10.48550/arXiv.2509.07688

Acknowledgements: We acknowledge funding from NSF through the Learning the Earth with Artificial Intelligence and Physics (LEAP) Science and Technology Center (STC) (Award #2019625). This research was also financially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP), and the Excellence Center at Linköping–Lund in Information Technology (ELLIIT).