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Background

Clouds are one of the largest sources of uncertainty in climate models [1].
Cirrus clouds (see above) are especially hard to model because they are
composed of ice crystals that come in many different shapes (see below).
Microphysical properties of ice crystals ultimately impact global radiative
forcing, precipitation, and the spatiotemporal distribution of clouds.

However,

the true distributions of ice crystal

diversity and their

relationship to thermodynamic conditions is not well understood. This
work provides a roadmap for learning meaningful latent representations
of ice crystal morphology and subsequent downstream applications to
improve our fundamental understanding of ice-containing clouds.
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Above: Sample images from cloud particle imager (CPI) probes. Measurements
were taken on various airborne field campaigns. A training set of ~3 million
unlabelled images were used for this study.
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Self-supervised learning (SSL) utilizes large unlabeled datasets to pre-train a model

that can then be utilized for various downstream tasks.

Cross-entropy loss
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Above: Overview of DINO-vMF
method used for pre-training [2,
3]. A small vision transformer
architecture is used. The learned
representations (i.e., backbone
embeddings) have been shown to
constitute a mixture model of vMF
distributions on a hypersphere.

Right: Description of the different
datasets utilized in this study for
pre-training, validation, and
analysis.

Results

Table below: Model validation results. The top-1 accuracy from kNN and Logistic Regressions
are used as baseline metrics to evaluate learned representations. The best model (bolded) used
ImageNet pre-trained weights and subsequent pre-training on curated CPI data (CPI-H-1M).

Dataset Name
CPI-3M
CPI-21K

CPI-ENV-500K

CPI-H-1M

Description
~3 million unlabeled CPI images

Hand-labeled subset of ~21K CPI
images

~500K CPIl images w/
corresponding environmental data

A subset of 1 million CPl images
after curation (using hierarchical
clustering)

SSLMethod PG Preimiing  Welgh | Top1 Accurcy (3
L kNN Logistic
DINOv3 LVD-1689M 1000 74.83 81.83
1BOT ImageNet 800 18:33 82.00
1BOT-vMF CPI-3M 100 7505 81.00
1iBOT-vMF CPI-H-1M 100 77.67 83.17
iBOT-vMF CPI-H-1M 10 81.56 84.39
Crystal Diversity Analysis
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Above: Map of flight tracks for the five campaigns that constitute CPI-ENV-500K, which was used
for downstream analysis of crystal diversity.

Below: Crystal diversity is quantified here with K, which is a scalar concentration parameter for vMF
distributions. (a) Diversity generally increases as temperature increases. (b) Diversity generally
decreases as ice particle size increases. The line colors correspond to different campaigns.
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High k: low diversity, Low k: high diversity High k: low diversity, Low k: high diversity
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Right: Matrix showing mean cosine
similarity values for different habit
clusters, using the labeled CPI-21K
dataset. The matrix expresses
intra-cluster (within cluster) diversity
along the diagonal and inter-cluster
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Conclusion & Future Work

Main points:

1. Robust crystal representations were efficiently learned using a
self-supervised vision transformer, leveraging ImageNet pre-trained weights
and data curation.

2. Trends in crystal diversity were explored using learned representation
embeddings. Diversity generally increased with increasing ambient
temperatures and decreasing particle size

3. Intra-cluster and inter-cluster similarities were also quantified using a
hand-labeled subset of data, revealing (i) which classes exhibit the most
in-class diversity, and (ii) which classes are most similar to each other.

Future work will include additional downstream scientific applications e.g.,
- Utilize embeddings for anomaly detection to identify rare crystals and
potentially uncover new crystal formation mechanisms.
- Dive deeper into the relationship between ice morphology and environmental
conditions (both instantaneous and historical).
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