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Abstract

Ice-containing clouds strongly impact climate, but they are hard to model due to ice
crystal habit (i.e., shape) diversity. We use self-supervised learning (SSL) to learn
latent representations of crystals from ice crystal imagery. By pre-training a vision
transformer with many cloud particle images, we learn robust representations of
crystal morphology, which can be used for various science-driven tasks. Our key
contributions include (1) validating that our SSL approach can be used to learn
meaningful representations, and (2) presenting a relevant application where we
quantify ice crystal diversity with these latent representations. Our results demon-
strate the power of SSL-driven representations to improve the characterization of
ice crystals and subsequently constrain their role in Earth’s climate system.

1 Introduction

Clouds are one of the largest sources of uncertainty in climate models [1, 2]. They are notoriously
difficult to represent accurately in models, and ice-containing clouds are especially challenging
due to highly diverse properties such as crystal morphology [3]. Ice microphysical properties alter
particle-radiation interactions and aerodynamics at the single-particle scale; and influence global
radiative forcing, precipitation, and spatiotemporal distributions of clouds through a cascade of
multiscale interactions [4, 5]. Improving our understanding of clouds is crucial, since uncertainties in
future cloud behavior largely drive the overall uncertainty of future climate projections [6–8].

One important way to constrain ice microphysical properties is to take in situ measurements. For
example, to understand the distribution of ice crystal habit (i.e., shape), millions of images of cloud
particles have been taken on numerous airborne campaigns using cloud particle imagers (CPI)
[9]. Historically, image processing techniques have been used to extract microphysically-relevant
properties from CPI images [10, 11], and more recently, supervised ML has been used to improve
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predictions of particle properties [12]. However, unsupervised ML has largely been underutilized in
the context of analyzing CPI data and in situ microphysical observations more broadly.

To our knowledge, this is the first application of self-supervised learning to explore patterns of latent
ice crystal representations. We pre-train a state-of-the-art vision transformer on a large CPI dataset
to learn robust crystal representations that can support downstream science-oriented tasks. We also
demonstrate an efficient pre-training pipeline that leverages existing pre-trained models and data
curation. Model validation using a smaller, labeled test set confirms that the representations are
encoding physically meaningful features. This work highlights the benefits of learning robust crystal
representations and paves the way for more accurate, data-driven ice microphysical models.

2 Data and methods

2.1 Dataset description

The main data in this study are CPI images that come from various federally-funded airborne field
campaigns. In brief, a CPI is an optical imager that takes single-channel images of cloud particles
with a charge-coupled device (CCD) camera. The native CPI resolution is 2.3 µm, but each image
was resized to a resolution of 224× 224 pixels. In total, ∼3.2 million unlabeled CPI images from
across 13 field campaigns were used as the available pre-training dataset for our model (hereafter
CPI-3M). To validate learned representations, we used a smaller, hand-labeled subset of ∼21,000
CPI images (hereafter CPI-21K). In addition, the CPI-3M also contained habit classification labels
that were predicted using a fine-tuned VGG16 convolutional neural network from Przybylo et al.
[12]. Examples of CPI images are shown in Figure 1. A subset of CPI-3M had corresponding
environmental data that we used for downstream analysis (see Section 3). The environmental data
include measurements such as pressure, temperature, and ice water content. ∼524,000 CPI images
had corresponding environmental measurements (hereafter CPI-ENV-500K).

Figure 1: Examples of CPI images grouped by habit (i.e., shape).

2.2 Efficient self-supervised pre-training

Self-supervised learning (SSL) is an effective approach to learn informative representations of
unlabeled data [13, 14]. Such representations enable various downstream analyses as well as efficient
predictions with minimum labeling efforts [15]. CPI images exhibit natural clusters characterized by
ice habits. Hence, we consider state-of-the-art, clustering-based SSL methods from the DINO family
[16, 17], which are trained to assign each image to a cluster such that its augmented views, obtained by
applying data augmentations, are also assigned to the same cluster. Govindarajan et al. [18] showed
that the representations constitute a mixture model of von Mises-Fisher (vMF) distributions. We use
the iBOT-vMF method [18] to pre-train our models and use the small Vision Transformer model
architecture with a patch size of 16 (more details in A.5.1). We evaluate the learned representations
with the downstream task of classifying the CPI-21K dataset.

SSL models pre-trained on ImageNet [19] are publicly available. These models transfer well to
ImageNet-related domains, but their performance in entirely new domains is unclear [20]. First, we
evaluate a CPI-3M pre-trained model and compare it with the best ImageNet pre-trained model (see
Table 1). We also consider the recent DINOv3 [21] model that is pre-trained on a larger private dataset
consisting of 1.7B naturalistic images. We observe that the ImageNet pre-trained model performs
well, showing that features learned from ImageNet can transfer well to CPI images. Pre-training the
DINO family models on imbalanced data is a known challenge [22, 23]. We address this limitation
by following a data curation strategy proposed by Vo et al. [23]. Specifically, we curate 1.2 million
images from CPI-3M through hierarchical sampling of data in the learned latent space (see A.5.2
for more details). This produces images that are more uniformly distributed in the latent space and
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hence, less imbalanced. We call this new dataset CPI-H-1M. Pre-training on this ∼3× smaller dataset
results in an improved model, demonstrating the importance of data curation.

The above experiments showed that data curation is important and that ImageNet pre-trained models
work reasonably well on CPI data. Also, pre-training on well-curated datasets in the target domain
demonstrated potential for improved performance with better evaluation results. With this motivation,
we investigated if we could pre-train models for CPI data more efficiently. Specifically, we pre-train
a model on the curated CPI-H-1M dataset using iBOT-vMF for only 10 epochs and initialize the
model with the ImageNet pre-trained model weights. Given a well-curated dataset like CPI-H-1M,
this approach is ∼ 30× more compute efficient than directly pre-training on the large CPI-3M dataset
and resulted in the best performance based on validation of learned representations (see Table 1).

Table 1: Comparison of self-supervised learning models on the task of classifying the CPI-21K
dataset using kNN and logistic regression classifiers. We use ViT-Small model architecture for all
results and report the Top-1 accuracy metric.

SSL Method Pre-training
dataset

Pre-training
epochs

Weight
initialization

Top-1 Accuracy (%)

kNN Logistic

DINOv3 LVD-1689M 1000 ✗ 74.83 81.83
iBOT ImageNet 800 ✗ 78.33 82.00
iBOT-vMF CPI-3M 100 ✗ 75.05 81.00
iBOT-vMF CPI-H-1M 100 ✗ 77.67 83.17
iBOT-vMF CPI-H-1M 10 ✓ 81.56 84.39

(a) (b)

Figure 2: 2D projections of the 384-dimensional latent embeddings. A subset of 3000 samples is
shown here. (a) Non-linear dimensionality reduction with UMAP. (b) Linear projection with PCA.

3 Results and discussion

3.1 Quality of learned representations

To supplement the validation results in Table 1, here we (1) confirm if clusters match expert habit
labels, and (2) compare to a feature-extraction based baseline to demonstrate the benefit of SSL
representations. For (1), we used dimensionality reduction to inspect clusters in 2D space. For
clarity, we used a balanced subset of 3000 CPI-3M samples, and three of the seven classes to reduce
visual clutter (see Appendix A.1). UMAP and PCA were used to project the 384-dimensional SSL
embeddings into 2D. Figure 2 visualizes the projections, with points colored by labels predicted
by a CNN from Przybylo et al. [12]. PCA reveals three distinct clusters, while UMAP forms more
fragmented groupings. This aligns with the strong performance of the logistic regression on CPI-21K
and suggests our model is learning approximately linearly separable morphological features without
explicit guidance. For (2), we trained a baseline classifier using the CPI-21K dataset, using 13
extracted geometric features as predictors. These geometric features are derived using traditional
image processing techniques, and include features such as aspect ratio, laplacian blur, and circularity,
among others. Further details about these features can be found in Przybylo et al. [12]. The feature-
based logistic regression performed with a top-1 accuracy of 65%, which is much lower than the 84%
accuracy from our logistic regression validation using our best model (see Table 1).
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3.2 Application: quantifying ice crystal diversity

After validating the learned representations, we applied them to a downstream science task: quanti-
fying ice habit diversity in real-world clouds. Existing methods to quantify habit diversity rely on
pre-designated classes and assumptions about certain morphological features, whereas SSL-driven
embeddings enable a purely data-driven approach without any prior assumptions. Since our repre-
sentations follow vMF distributions, the most appropriate metric to characterize diversity is the κ
(i.e., “concentration") metric [24] (details in Appendix A.3). Using CPI-ENV-500K, we analyzed
how κ varies as a function of air temperature, particle size, and campaign. Figure 3a generally shows
increasing habit diversity with increasing temperatures, and Figure 3b shows decreasing diversity
with increasing particle size. Additionally, we see a wide spread between campaigns, highlighting
the variability in crystal diversity between different cloud systems (see Appendix A.2).

(a) (b)

Figure 3: Crystal diversity (κ) using CPI-ENV-500K. (a) κ as a function of air temperature and
stratified by campaign. (b) κ as a function of particle size (width) and stratified by campaign.

CI = compact irregular
BL = bullet rosette
PP = planar polycrystal
AG = aggregate
BD = budding rosette
CL = column
RI = rimed 

Figure 4: Cosine similarity heatmap. Intra-(diagonal) and
inter-(row-wise) class similarity. Representative CPI images
from each class are shown at the top.

We also quantified both intra- and
inter-cluster similarity. Assuming
clusters loosely follow expert labels,
we computed the mean cosine simi-
larity for each predicted class, with
respect to the centroid of all other pre-
dicted classes. Figure 4 shows the
heatmap of the mean cosine similarity,
where the diagonal describes the intra-
cluster diversity, and the off-diagonal
values describe the inter-cluster simi-
larities. In other words, the heatmap
shows us which habit classes show
the most variability within that clus-
ter, and also which clusters are most
similar or dissimilar to each other.

4 Conclusion

We used the iBOT-vMF SSL vision transformer [18] to learn ice crystal representations from a large
CPI dataset. Standard SSL pre-training can be computationally expensive. Through data curation
and by leveraging ImageNet pre-trained weights, we outline an efficient pre-training pipeline. This
resulted in robust embeddings with strong linear predictive power for downstream habit classification,
validating our learned representations. These latent representations enable fully data-driven pipelines
to characterize ice crystal morphology, reducing dependence on pre-defined classes and expert-driven
assumptions. As a case study, we revealed systematic ice crystal diversity variations with temperature,
particle size, and campaign, and quantified intra- and inter-class similarity across habit types. For
future work, we will explore how learned embeddings can support anomaly detection, identifying
mislabeled or rare habits, in addition to further linking microphysical properties to thermodynamic
histories. This work demonstrates that SSL can effectively capture ice crystal morphology as latent
representations, providing a scalable framework to reduce microphysical uncertainties and improve
the representation of ice-containing clouds in climate models.
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A Appendix

A.1 Dimensionality reduction

Figure 5 shows the 2D UMAP and PCA projections including all classes, as referenced in Section
3.1. 1000 samples per class are shown here, analogous to Figure 2. Note the high degree of overlap
in 2D space, which is not surprising given that 384-dimensional embeddings are being reduced to 2D.
Three distinct classes were chosen out of the seven classes shown here for the main text to reduce
visual clutter and for the sake of demonstration.

(a) (b)

Figure 5: 2D projections of the 384-dimensional latent embeddings. 7000 samples (1000 samples per
class) are shown here. (a) Non-linear dimensionality reduction with UMAP. (b) Linear projection
with PCA.

A.2 Campaign details

Additional details regarding the campaigns are described here. Figure 6 shows a map indicating
where the various campaigns were conducted, as well as displaying the flight tracks of the individual
campaigns in more detail. Figure 7 shows the variability in conditions (e.g., temperature, ice water
content, and altitude) between the different field campaigns. As mentioned in Section 3.2, we
observed a wide inter-campaign range of crystal diversity. The large differences in environmental
conditions for the different campaigns are highlighted here.

Figure 6: Maps showing the general locations (left) of the different field campaigns mentioned in
Section 3.2 as well as the respective zoomed-in views (right) of the flight tracks.
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(a) (b)

(c)

Figure 7: Distributions of (a) air temperature, (b) ice water content, and (c) altitude for the different
field campaigns represented as box-and-whisker plots.

A.3 Metrics details

For a random p-dimensional unit vector xi, the von Mises-Fisher (vMF) probability distribution is
given by f(xi;µ, κ) = Cp(κ) exp(κµ

Txi), where µ is a mean vector with ∥µ∥ = 1, κ is a scalar
concentration parameter that measures isotropic precision, and Cp(κ) is a normalizing constant. A
higher value of the parameter κ denotes a higher concentration of samples around the mean vector µ
and lower variance or diversity. On the other hand, a lower value of the parameter κ denotes a lower
concentration and consequently a higher variance or diversity. We used the following equations to
estimate κ for a set of embedding vectors [24]:

κ̂ =
R̄
(
p− R̄2

)
1− R̄2 R̄ =

∥∥∥∑N
i=1 xi

∥∥∥
N

where xi ∈ Rp is the i-th normalized embedding vector, N is the number of samples, and p is the
embedding dimensionality.

We computed cosine similarity between two embedding vectors xi, xj ∈ Rp as:

cosine_similarity(xi, xj) =
xi · xj

∥xi∥ ∥xj∥

A.4 Datasets

The CPI-3M dataset is a raw uncurated dataset obtained by combining images from all airborne
field campaigns. The CPI-H-1M is curated in an unsupervised manner from the CPI-3M dataset, as
detailed in the Section 2.2 and Appendix A.5.2. A subset of data from CPI-3M dataset contained
environmental data and this subset is denoted as CPI-ENV-500K. CPI-21K is a smaller dataset
where the ice habit classes are hand-labeled. This dataset is further split into training and test splits
consisting of 19,737 and 1,800 images respectively. The test split is balanced and contains equal
number of images per class, that is, 200 images in each of the nine classes.
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Table 2: CPI Image Datasets. Pseudo-labeled means labels were predicted using a supervised CNN
described in Przybylo et al. [12].

Dataset name # images Labels Label type Environmental data Data curation

CPI-3M 3,200,351 ✓ Pseudo-labeled using a CNN ✗ ✗
CPI-H-1M 1,200,000 ✓ Pseudo-labeled using a CNN ✗ ✓
CPI-ENV-500K 524,000 ✓ Pseudo-labeled using a CNN ✓ ✗
CPI-21K 21,537 ✓ Hand-labeled ✗ ✗

A.5 Implementation details

A.5.1 Self-supervised Pre-training

Method overview: We use a clustering-based self-supervised pre-training method from the DINO
family, known as iBOT [17]. This uses a teacher-student self-distillation setup where both the teacher
and the student have the same model architecture and are initialized with random weights. Given
images x from an unlabeled image dataset, we obtain randomly augmented views of the image,
xs = As(x) and xt = At(x). Here, As and At are random augmentations specific to the student
and teacher models. The student and teacher networks consist of a backbone model (typically a
Vision Transformer) and a prediction head. The backbone model is used for different downstream
tasks but the prediction head (typically an MLP) is only used during pre-training and then discarded.
The student and teacher models output probability distributions over K pseudo-classes or clusters.
The student model is trained to match the cluster assignment of the teacher, using a cross-entropy
loss between the student and teacher outputs. The student model weights are updated using the loss
gradients and the teacher model is updated using an exponential moving average of the student model
weights. For a more detailed description and motivation behind this training methodology, we refer
the reader to the original papers of DINO [16], iBOT [17] and DINO-vMF [18].

Implementation: We use the public codebase of iBOT 1 and use the vMF normalized formulation
proposed in Govindarajan et al. [18]. We modified the image augmentations used during the pre-
training based on their suitability to CPI images. Since, CPI images are monochromatic, we remove
the jitter to the image saturation and hue. In addition to the random horizontal flip, we added a
random vertical flip with a probability of 0.5, as the crystals can be freely rotated in space. In the
existing random resized crop augmentation, we reduced the change in aspect ratio of the crop by
setting the new aspect ratio to be in the range of (0.9, 1.1). The ice crystals contain spikes of varying
thickness which is an important distinguishing feature of the crystal and we want this information to
be preserved in the learned representations. We use this modified set of augmentations for all the
pre-training experiments that we conducted. Other hyperparameter settings for both the standard
pre-training setup and the shorter and more efficient pre-training setup are provided in Table 3. In
the efficient pre-training setup, we initialize the model with the weights from a model pre-trained on
ImageNet-1K dataset using the iBOT method [17].

A.5.2 Data curation

In this section, we provide additional details on how we curate the CPI-H-1M dataset from the larger
CPI-3M dataset. Firstly, we run a hierarchical KMeans algorithm on the latent representations using
a hierarchy as follows: 3.2M images → 50K clusters → 5K clusters → 1K clusters → 200 clusters.
We use the latent representations obtained from the ViT model pre-trained using iBOT-vMF on
CPI-3M dataset. If an existing pre-trained model (such as those trained on ImageNet) would perform
reasonably well on the target dataset, then one could also consider those latent representations for
this step. Then, we use hierarchical sampling where we compute the number of samples per sub-tree,
starting from the coarsest level in the hierarchy. As demonstrated in Vo et al. [23], this produces
uniform distribution of samples across different levels in the hierarchy. We used the code available in
their public repository 2.

1https://github.com/bytedance/ibot/
2https://github.com/facebookresearch/ssl-data-curation
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Table 3: Hyperparameter settings for iBOT-vMF pre-training using the standard setup and the
proposed efficient setup using weights initialized from an ImageNet pre-training.

Hyperparameter Standard iBOT-vMF Efficient iBOT-vMF

training epochs 100 10
batch size 1024 1024
learning rate 4e−4 3e−4
warmup epochs 10 8
freeze last layer epochs 1 1
min. learning rate 1e−6 1e−6
weight decay 0.04 → 0.4 0.04 → 0.1
stochastic depth 0.1 0.1
gradient clip 1.0 1.0
optimizer adamw adamw
shared head ✓ ✓
fp16 ✓ ✓

momentum 0.996 → 1.0 0.996 → 1.0
global crops 2 2
global crops scale [0.32, 1.0] [0.32, 1.0]
local crops 10 10
local crops scale [0.1, 0.32] [0.1, 0.32]

head mlp layers 3 3
head hidden dim. 1024 1024
head bottleneck dim. 64 64
norm last layer ✗ ✗
num. prototypes 2048 2048
vmf normalization ✓ ✓
centering probability probability

teacher temp. 0.04 → 0.07 0.04
temp. warmup epochs 30 −
student temp. 0.1 0.1

pred. ratio [0.0, 0.3] [0.0, 0.3]
pred. ratio variance [0.0, 0.2] [0.0, 0.2]
pred. shape block block
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