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Abstract

Geospatial foundation models for Earth observation often fail to perform reliably
in environments underrepresented during pretraining. We introduce SHRUG-FM,
a framework for reliability-aware prediction that integrates three complementary
signals: out-of-distribution (OOD) detection in the input space, OOD detection
in the embedding space and task-specific predictive uncertainty. Applied to burn
scar segmentation, SHRUG-FM shows that OOD scores correlate with lower
performance in specific environmental conditions, while uncertainty-based flags
help discard many poorly performing predictions. Linking these flags to land cover
attributes from HydroATLAS shows that failures are not random but concentrated
in certain geographies, such as low-elevation zones and large river areas, likely due
to underrepresentation in pretraining data. SHRUG-FM provides a pathway toward
safer and more interpretable deployment of GFMs in climate-sensitive applications,
helping bridge the gap between benchmark performance and real-world reliability.

1 Introduction

Following the success of foundation models in natural language processing and computer vision,
geospatial foundation models (GFMs) for Earth observation (EO) are gaining traction [1]. Trained on
large-scale datasets gathered by satellites such as Sentinel and Landsat, these models aim to learn
transferable representations of the Earth’s surface. Recent examples like Clay [2], SSL4EO-S12 [3],
Prithvi [4], EarthPT [5] and Scale-MAE [6] capture detailed spatial and spectral patterns across
diverse regions and timescales. These general-purpose representations are provided as precomputed
embeddings or pre-trained models and can be applied to downstream tasks, out-of-the-box or with
minimal finetuning to capture more application-specific features.

However, ongoing research questions the reliability of foundation models for EO in real-world
scenarios [7, 8]. These models can fail under spatial extremes, such as underrepresented geographies
(e.g., deserts, polar regions, high latitudes etc.) and temporal extremes, such as atypical seasons,
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extreme weather events or long-term environmental shifts like droughts, due to gaps in geographic or
seasonal coverage of the data used to pre-train the models [9, 7]. Most models lack built-in mecha-
nisms for detecting out-of-distribution (OOD) inputs or for quantifying uncertainty, often producing
overconfident predictions. Recent benchmarks such as REOBench [10], GeoBench [11] and PAN-
GAEA [8] evaluate GFMs under conditions that better reflect real-world deployment, including shifts
in geography, seasonality and sensor type. The results show that GFMs are regularly outperformed
by simple supervised baselines, highlighting the need for systematic reliability assessments of their
predictions, including OOD detection and uncertainty estimation.

We present an initial version of SHRUG-FM (Systematic Handling of Real-world Uncertainty for
Geospatial Foundation Models), a framework for reliability-aware prediction in GFMs for EO (Figure
1). It integrates three complementary signals: (1) OOD detection in the input space, (2) OOD detection
in the embedding space and (3) task-specific predictive uncertainty. The first two identify samples
that deviate from the training distribution, either in raw inputs or embeddings, while the third captures
uncertainty in the downstream model’s predictions. Together, these signals provide a comprehensive
reliability assessment, supporting deployment decisions and guiding future pretraining data strategies.
We demonstrate SHRUG-FM on burn scar segmentation (ExEBench [7]) using models trained on the
SSL4EO-S12 dataset [9], which offers global coverage and multiple pretrained encoders of varying
sizes and training strategies, enabling systematic comparisons. We incorporate geospatial context via
HydroATLAS [12], overlaying predictions and uncertainties onto layers such as elevation or land
cover. This enables users to identify unreliable predictions and link them to specific environmental
features, revealing interpretable gaps in the foundation model’s pretraining. Such diagnostics are
critical for climate-sensitive applications, where overconfident or inaccurate predictions can misguide
interventions. While demonstrated on burn scars, SHRUG-FM is designed to extend to other GFMs
and tasks and we will evaluate its broader utility in future work.
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Figure 1: The SHRUG-FM framework. It computes three complementary signals: OOD detection
in the input, OOD detection in the embeddings and task-specific predictive uncertainty. These are
combined to enable reliability-aware predictions, flagging or abstaining from low-confidence outputs.

2 Data and Methods

Our work builds on SSL4EO-S12 [9], a large-scale global Sentinel-2 dataset (Appendix 5.1), and
pretrained models derived from it. These models use different self-supervised learning strategies,
contrastive learning (MoCo), self-distillation (DINO) and masked autoencoding (MAE), with a ViT-
S/16 backbone. All models are frozen and used as feature extractors for downstream segmentation
tasks. We apply SHRUG-FM to burn scar segmentation (ExEBench Burn Scars [7]). Wildfires are
increasing in frequency and intensity under climate change [13] and accurate mapping of burn scars
is essential for understanding local fire regimes, monitoring ecosystem recovery and supporting
risk management [14, 15]. The burn scars dataset captures high-impact events that are often un-
derrepresented in a foundation model’s pretraining distribution and present real-world challenges

2



such as cloud cover, class imbalance and high variability in event size and year, making them ideal
for studying reliability under distribution shift. For uncertainty estimation and evaluation, we train
a decoder on the downstream dataset. For the OOD detection components in the raw input and
embedding spaces, we match the spectral bands between SSL4EO-S12 and the downstream data to
ensure comparability with the pretraining distribution (Appendix 5.1.2). To interpret the flags, we
examine their spatial distribution and link them with HydroATLAS attributes [12] (Appendix Table
1, Fig. 5). This reveals which features are most associated with high uncertainty or distributional
mismatch, providing insights into what the GFM may have underrepresented during pretraining.

Out-of-Distribution Detection. To detect inputs that deviate from the pretraining distribution, we
analyze their position in both the raw input space and the embedding space of the foundation model.
We apply k-means clustering on the SSL4EO-S12 dataset in both spaces, selecting the number of
clusters via the heuristic elbow method (k=15). For each test sample, we compute its Euclidean
distance to the nearest cluster centroid. We analyze the densities of these distances (Appendix Fig. 3)
and observe that downstream samples are generally further away from the pretraining cluster centers.
We also compute the Nearest Centroid Distance Deficit (NCDD) [16], which compares the distance
to the nearest centroid with the summed distances to all others (Appendix 5.2.1 for more details).
These two metrics provide complementary signals: the distance measures how far a sample lies from
the nearest known group, while NCDD quantifies how confidently it belongs to that group versus
being ambiguous between others.

Uncertainty Quantification. To effectively measure a model’s uncertainty, we must distinguish
between aleatoric (due to inherent data variability) and epistemic (due to a lack of knowledge)
uncertainty [17]. While standard models may provide probability outputs, which can be interpreted as
aleatoric uncertainty, these are often overconfident, especially for OOD data [18]. We improve upon
these by training an ensemble of decoders (Appendix 5.3.2) on bootstrapped data [19] as well as a
model with dropout uncertainty estimates [20], which also capture epistemic uncertainty. On a pixel
level, we compute standard uncertainty metrics: probability, entropy, predictive variance and mutual
information (Appendix 5.2.4). On the image level, we want to obtain metrics to flag the prediction of
a whole scene. As a simple heuristic, to account for spatial variability, we average the metrics over the
(predicted) event size (Appendix 5.2.5). Discard-based evaluation allows to assess the practical utility
of uncertainty estimates: we iteratively remove predictions with the highest estimated uncertainty
and track segmentation performance (IoU, F1-score, accuracy) on the retained subset. Preliminary
experiments show that the model is able to assign low confidence to predictions that are likely to be
incorrect.

3 Results

Figure 2 shows our main outcomes: a) OOD metrics correlate with performance (samples are
grouped by semantic HydroATLAS attributes), b) uncertainty flagging allows discarding lower-
performing samples and c) visualizes both mechanisms integrated into a dashboard to help users
make informed decisions on whether to trust predictions. A demo dashboard is online at https:
//2025-esl-extreme-environments-demo-rj7dyok9w.vercel.app/ and further results are
provided in Appendix 5.4. The results shown below are for MoCo (Appendix 5.3.1). To test the
consistency of our findings, we evaluate SHRUG-FM across foundation models trained with different
strategies (MAE, MoCo, DINO), all using a ViT-S/16 backbone (Appendix Table 2).

Out-of-Distribution Metric: As a first analysis, we grouped burn scar scenes by deciles of HydroAT-
LAS features relevant to burn scar detection. For each group, we computed the mean NCDD and
plotted it against the mean F1 score. We observe a robust linear relationship between NCDD and F1,
implying that NCDD is an indicator of performance. Lower elevation or pasture extent and larger
river area are associated with lower performance and higher OOD signals, indicating that predictions
for these characteristics should be interpreted with caution. Fig. 5 in the Appendix visualizes these
features and their performance on a map, highlighting a cluster of poorly performing scenes in the
southeastern US. This aligns with low elevation, low pasture extent and high river area. While this is
an initial, descriptive analysis, it suggests that foundation model developers may need to augment
data this and similar regions. These initial outcomes underline the practical value of future systematic
studies to identify features that consistently drive OOD behavior and to pinpoint undersampled areas.
We also plan to examine cases where a scene is in-distribution in one space but OOD in the other
(preliminary results are shown in Fig. 4 in the Appendix), which likewise warrant caution.
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a)   Out-of-Distribution Metric b)   Uncertainty Metric

c)   Flagging Mechanism

Figure 2: SHRUG-FM combines complementary signals to flag unreliable predictions. (a) The
out-of-distribution (OOD) metric NCDD (in the embedding space) correlates with F1 scores (samples
are grouped by HydroATLAS attributes). Low elevation, low pasture extent and large river areas are
associated with lower performance and stronger OOD signals (higher NCDD) (b) A histogram of
per-image test performance shows that the variance-based flag discards lower-performing samples. (c)
Metrics are integrated into a dashboard, visualizing predictions, probability maps, reliability scores.

Uncertainty Metric: We applied an image-level discard flag based on the average predictive variance
over the predicted burn scar, which is highest when (trained or dropout) ensemble members strongly
disagree. By integrating over an adaptive region, this approach can also flag small scars with high
uncertainty. The histogram in Fig. 2 shows that the flag successfully discarded many low-performing
scenes while only affecting a few high-performing ones. However, it misses a set of poorly performing
images where no burn scar was predicted. A less conservative threshold for the integration area,
based on predicted probability, could help address this. Finally, the threshold that defines a failure
mode should be determined by the downstream user, possibly requiring further calibration.

4 Conclusions and Pathway to Impact

SHRUG-FM offers practical steps to enhance the reliability of GFMs for EO in high-stakes envi-
ronmental monitoring. By combining complementary uncertainty signals, related to the data (input
and embedding OOD) and the downstream task (predictive uncertainty), it identifies where and why
models may fail beyond standard benchmarks. The first important next step is to quantify the value
of the proposed flags with metrics for discard mechanisms, like classification and rejection quality
and the Area Under the Risk-Coverage Curve (AURC) [21]. We will also explore selective prediction
mechanisms [22], training the system to combine the flags to abstain when uncertainty is high, going
beyond setting a fixed threshold. To verify that SHRUG-FM works broadly, we will evaluate it across
additional tasks, including flood mapping (with the WorldFloods dataset [23]) and landslide detection
(with the CAS landslide dataset [24]) and across multiple GFMs (Prithvi [4], TerraMind [25]) that
vary in pretraining strategy, model size and input modality. This comparative analysis will serve two
purposes: first, to confirm that the flags consistently correlate with performance across tasks and
models; and second, if this holds, to assess how different model designs and pretraining data choices
influence reliability, guiding the building of more trustworthy GFMs in the future.
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5 Appendix

5.1 Data

5.1.1 SSL4EO

SSL4EO-S12 [9] is a large-scale dataset of multi-seasonal Sentinel-1 and Sentinel-2 (S2) imagery
covering ~250,000 locations worldwide. The S2 data includes 13 spectral bands (B1–B8A, B9,
B11, B12), preprocessed to a common 10m resolution. Locations are sampled throughout the year,
ensuring seasonal diversity. This design captures temporal dynamics such as vegetation cycles, land
cover change and climate-related variations. Together, these characteristics make SSL4EO-S12 one
of the most comprehensive datasets available for large-scale self-supervised representation learning
in Earth observation.

5.1.2 Burn scar segmentation: ExEBench

ExEBench Burn Scars [7] dataset consists of harmonized satellite imagery from Landsat and Sentinel-
2 collected over burn scar areas between 2018 and 2021 over the United States. It contains 804
images of size 512× 512, each with 6 spectral bands (covering visible, infrared, near-infrared and
shortwave infrared). The resolution corresponds to 30 meters per-pixel.

5.1.3 Interpretable Attributes: HydroATLAS

HydroATLAS [12] is included in our experiments to provide complementary semantic analysis. The
global BasinATLAS annotations of the HydroATLAS dataset provide hydro-environmental attributes
spatially aggregated within a multi-level hierarchy of hydrological units. Our experiments use level
12 basins, the most granular resolution offered by HydroATLAS and the following characteristics,
which are of particular relevance or of diagnostic value for the considered downstream tasks:

Table 1: BasinATLAS descriptions for the subset of attributes relevant for our downstream tasks.

Variable Description (Units)
HYBAS_ID HydroBasins ID
SUB_AREA Sub-basin area extent (km2)
inu_pc_smn Inundation Extent (min annual), percent cover
inu_pc_smx Inundation Extent (max annual), percent cover
ria_ha_ssu River Area (hectares)
ele_mt_sav Elevation (avg), meters a.s.l.
ele_mt_smn Elevation (min), meters a.s.l.
ele_mt_smx Elevation (max), meters a.s.l.
slp_dg_sav Terrain Slope (avg), degrees (×10)
snw_pc_syr Snow Cover Extent (avg annual), percent cover
snw_pc_smx Snow Cover Extent (max annual), percent cover
glc_cl_smj Land Cover Classes (spatial majority), classes (22)
wet_pc_sg1 Wetland Extent (class grouping 1), percent cover
wet_pc_sg2 Wetland Extent (class grouping 2), percent cover
for_pc_sse Forest Cover Extent (avg), percent cover
crp_pc_sse Cropland Extent (avg), percent cover
pst_pc_sse Pasture Extent (avg), percent cover
ire_pc_sse Irrigated Area Extent (avg), percent cover
urb_pc_sse Urban Extent (avg), percent cover
hft_ix_s09 Human Footprint, index value (×10)

For each sample in the pretraining as well as the downstream task datasets, the aforementioned
BasinATLAS attributes are queried at the patch’s center in order to retrieve the values of the level 12
basin that the centroid falls in. This maps each data sample to a list of BasinATLAS attribute values.
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5.2 Metrics

5.2.1 Out of Distribution Metrics

1. Nearest Centroid Distance Deficit (NCDD) For computing the NCDD values, we use the
formulation described in [16].

NCDD = α ·Dothers − β ·Dnearest

where Dnearest corresponds to the distance of a test point to the nearest centroid and Dothers

corresponds to the sum of its distances to all the other centroids. Since results were robust to different
settings of α and β, we use α=1 and β=14 (where 14 corresponds to k − 1). This further ensures
that the metric is bounded between 0 and 14.

5.2.2 Performance Metrics

Metrics for Binary Predictions For a binary prediction (e.g., a pixel is either "burn scar" or
"not burn scar"), we can evaluate performance using a confusion matrix with four key values: True
Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN).

1. IoU (Intersection over Union) Also known as the Jaccard Index, IoU measures the overlap
between the predicted and ground truth areas. It is the ratio of the intersection of the two sets of
pixels to their union.

IoU =
TP

TP + FP + FN

2. F1-score The F1-score is the harmonic mean of Precision ( TP
TP+FP ) and Recall ( TP

TP+FN ).

F1 = 2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN

3. Accuracy Accuracy is the proportion of all correct predictions out of the total number of
predictions.

Accuracy =
TP + TN

TP + FP + TN + FN

For unbalanced tasks, where one class is significantly more frequent than the other (e.g., a small burn
scar within a large image), Accuracy can be misleading. A model that simply predicts the majority
class will achieve a high accuracy score, despite being useless for the minority class. In contrast, IoU
and F1-score are more suitable as they focus on the positive class. Both metrics require the model
to correctly identify a meaningful number of positive pixels to achieve a high score, making them
robust to class imbalance.

5.2.3 Metrics for Predicted Probabilities

When models output probabilities, it is crucial that these probabilities are well-calibrated, meaning
they accurately reflect the true likelihood of an event.

1. Expected Calibration Error (ECE) ECE measures how well a model’s predicted probabilities
align with the observed accuracy. The probability range is divided into a fixed number of bins and
ECE is the weighted average of the absolute differences between the average predicted probability
(confidence) and the actual accuracy within each bin.

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

where M is the number of bins, |Bm| is the number of samples in bin m, n is the total number of
samples, acc(Bm) is the accuracy in bin m and conf(Bm) is the average confidence in bin m.
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2. Adaptive Calibration Error (ACE) ACE is an improved version of ECE that addresses its
limitations in handling unbalanced datasets. Instead of using equally-sized bins, ACE uses adaptively-
sized bins so that each bin contains an approximately equal number of data points. This ensures that
even for rare, low-confidence predictions, there are enough samples in a bin to provide a meaningful
calibration estimate. For unbalanced datasets, many predictions may fall into a few high-confidence
bins, which ECE may not accurately represent. By contrast, ACE’s adaptive binning provides a more
meaningful calibration score across the entire range of predictions, making it a more robust metric
for unbalanced tasks.

5.2.4 Pixel-level Uncertainty Metrics

Given an ensemble of N models, each providing a probabilistic prediction fi(x) = pi for an input x,
we compute four key uncertainty measures.

1. Predicted Probability The predicted probability p̄ is the average of the individual model
predictions. It represents the ensemble’s consensus on the most likely class and the estimated
aleatoric uncertainty.

p̄ =
1

N

N∑
i=1

pi

2. Predictive Entropy Predictive entropy H(p̄) measures the overall uncertainty of the ensemble’s
average prediction. A high value indicates a diffuse, uncertain prediction over multiple classes.

H(p̄) = −
C∑

c=1

p̄c log(p̄c)

where C is the number of classes and p̄c is the mean predicted probability for class c.

3. Predictive Variance Predictive variance V(p) quantifies the disagreement among the ensemble
members. It captures the spread of individual model predictions.

V(p) =
1

N

N∑
i=1

(pi − p̄)2

4. Mutual Information Mutual information I measures the reduction in uncertainty about the
predicted class provided by the ensemble. It captures the epistemic uncertainty or the uncertainty due
to a lack of model consensus.

I = H(p̄)− 1

N

N∑
i=1

H(pi)

where H(pi) is the entropy of the i-th model’s prediction.

5.2.5 Image-level Uncertainty Metrics

1. Uncertainty over Region of Interest To obtain a single uncertainty value for an entire image,
we aggregate a chosen pixel-level metric over a specific region of interest (ROI). For a given pixel-
level uncertainty metric M(x) (e.g., Predictive Variance), the image-level uncertainty Uimage is the
average of that metric over the ROI.

Uimage =
1

|ROI|
∑

x∈ROI

M(x)

where |ROI| is the number of pixels within the region of interest.

A common ROI is the predicted event area, defined as the set of pixels where the mean predicted
probability p̄ is greater than or equal to a threshold (e.g., 0.5 for a binary classification). Due to the
clear interpretation and effectiveness, we chose the predictive variance over the predicted event area
as the metric of choice for the results shown in Figure 2. In general, uncertainties highly depend on
the task at hand and metrics specifically for borders and patches have been proposed [26, 27].
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5.3 Methods

5.3.1 Foundation Model

The SSL4EO-S12 [9] dataset was published together with a suite of models trained on the data. This
suite encompasses various established vision model architectures, including ResNets and ViTs of
varying sizes, as well as trained weights from different pretraining strategies, such as MAE [28],
DINO [29] and MoCo [30]. We chose for our analysis the ViT/s 16 model with ∼23 million
parameters, which is a small vision transformer striking a balance between a performant state-of-the-
art vision model and size for running comprehensive analyses. For further studies and our analysis,
we focused on the MoCo ensemble as it was the model that yielded the best performance in F1 and
IoU, as well as the best adaptive calibration error as shown in Table 2. Furthermore, it was found that
contrastive methods such DINO or MoCo yield representation spaces that are better structured and
separable making them more suitable for our approach to OOD detection [31, 32]. We hence proceed
with the MoCo pretraining weights for all other baselines, such as the single model or the model with
MC dropout.

5.3.2 Downstream Model

As a decoder, we chose a common deep CNN with ∼41 million parameters. By choosing an
expressive decoder model, we ensure that if any problems in expressiveness arise, they would stem
from the encoder foundation model as the focus should not be on the downstream model.

5.3.3 Downstream Uncertainty

We employ two established ensemble methods to estimate the aforementioned uncertainty metrics:
Deep Ensembles [19] and Monte Carlo (MC) Dropout [20]. Both methods generate a set of diverse
model predictions, from which we can compute predictive uncertainty.

1. Deep Ensembles Deep ensembles are a robust method for uncertainty estimation, as they have
been shown to capture key properties of the Bayesian posterior distribution [33]. To create our
ensemble, we train a set of 10 additional models with varying random seeds. To further enhance
the diversity of the individual models and improve their uncertainty estimates in regions of low data
density, each model is trained on a bootstrapped sample of the training data. [19] The main drawback
of this approach is the high computational cost for both training and inference due to the need to train
and store multiple full decoder models.

2. Monte Carlo Dropout As a more computationally efficient alternative, we utilize Monte Carlo
(MC) Dropout [20]. This method approximates a Bayesian neural network by introducing dropout
layers during training and keeping them active during inference. Dropout layers are inserted following
non-linear activation functions within multi-layer convolution blocks, but not for the last component
of a block. At test time, we perform 10 forward passes with dropout enabled to obtain a distribution
of predictions from a single model. This approach is easy to implement and computationally cheaper
than deep ensembles, as it does not require training multiple models. However, its expressiveness for
capturing epistemic uncertainty can be limited, particularly for data within the training convex hull
but in low-density regions [34].

5.4 Additional Results

Table 2: Performance of Baseline Models on Burn Scars Task

Model F1 ↑ IoU ↑ Accuracy ↑ ECE ↓ ACE ↓
MoCo Ensemble 0.8512 0.8532 0.9021 0.0248 0.0083
MAE Ensemble 0.8499 0.852 0.9041 0.0274 0.0085
DINO Ensemble 0.831 0.8358 0.8934 0.0328 0.0109
MoCo Single 0.7278 0.7615 0.8282 0.0102 0.0348
MoCo Dropout 0.7957 0.8107 0.8805 0.0144 0.0181
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Figure 3: Density of distances to nearest k-means centroid for pretraining and downstream data.
Downstream samples fall in higher-distance regions of the pretraining distribution (low density
regions of the pretraining distribution).
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Figure 4: Visualization of NCDD values for the downstream task overlaid on a hexagonal spatial
distribution of SSL4EO-S12 across the US. Downstream data points are shown as scatter points
positioned by their geographic locations. The color scale from purple to yellow represents increasing
NCDD values in the raw image space, while the opacity of each point corresponds to NCDD values
in the image embedding space. Eg: An opaque point corresponds to a low NCDD value in the
embedding space and a yellow colored point corresponds to a high NCDD value in the image space.
This highlights potential concerns regarding sampling strategy employed during pretraining.
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Figure 5: Visualization of F1 scores for the downstream task, Elevation (avg), River Area and Pasture
Extent overlaid on a hexagonal spatial distribution of SSL4EO-S12 across the US. Cross (+) points
represent highest/lowest values of the set. The F1 map highlights a low-performing cluster in the
southeastern US, corresponding to a region characterized by low elevation, limited pastures and a
relatively large river area. Moreover, the area contains few SSL4EO-S12 pretraining data points,
hinting that the foundation model could benefit from increased data representation for this region.

Table 3: Performance Comparison of Different Scores

Score AUC Risk-Coverage AUC Nonrejected Nonrejected F1
Risk-Coverage ↓ at 0.5 ↓ F1 ↑ at 0.5 ↑

Variance_0.2_scaled 0.345802 0.197721 0.630879 0.741266
Entropy_0.2_scaled 0.343770 0.186300 0.630627 0.743321
Mutual Information_0.2_scaled 0.345994 0.197721 0.631587 0.741184
normalized_distance_raw 0.525108 0.593164 0.605425 0.564644
-ncdd_raw 0.573665 0.570350 0.566803 0.549934
normalized_distance_embeddings 0.531331 0.494304 0.571290 0.603396
-ncdd_embeddings 0.386603 0.353603 0.704472 0.718206
-Elevation (avg) 0.322554 0.330789 0.723960 0.741955
-Pasture Extent 0.408957 0.315579 0.708769 0.755337
ria_ha_ssu 0.404475 0.357420 0.691717 0.718795
classifier_score 0.211224 0.133067 0.756739 0.816070
height
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