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Abstract

Despite bold claims that AI will accelerate scientific discovery, domains like cli-
mate change research still face challenges in learning from real-world data. We
propose a data preprocessing pipeline that addresses a key bottleneck in biodi-
versity monitoring: the lack of standardized image quality control in large-scale
species datasets. As climate change drives shifts in ecosystems, accurate species
identification is critical. Yet citizen science images, though rich in species diversity,
are often noisy and inconsistent. We systematically filters such data using classical
heuristics and Vision-Language Model (VLM)-based image quality assessment to
detect poor composition, human presence, and multiple-species interference. Zero-
shot benchmarks with state-of-the-art biodiversity fine-tuned foundation models
on filtered datasets of visually similar plant species demonstrate that data quality
significantly affects AI reliability. With this work, we highlight a core limitation in
biodiversity AI and encourage broader exploration of quality-related bottlenecks in
biodiversity monitoring. Code is available at the project website1.

1 Introduction

Advancements in AI are set to play a pivotal role in biodiversity conservation and ecological manage-
ment, especially as data from open citizen science platforms continues to grow. Among these, one of
the most prominent sources of raw biodiversity data is iNaturalist [25], a platform that hosts in-situ
observations across an exceptionally broad taxonomic spectrum. Each observation typically includes
one or more photographs, the date and time of the encounter, geographic coordinates, and optional
metadata such as life stage or observed behavior. This rich set of user-generated observations has
emerged as a valuable asset for the development, evaluation, and deployment of machine learning
(ML) systems. Numerous studies already demonstrate the utility of iNaturalist’s Research Grade
data for species identification [47, 51, 53]. To qualify as Research Grade, two or more experienced
iNaturalist community members—naturalists, biologists, or citizen scientists—must agree on the
species label assigned to an observation [26] (see Appendix B for details). Despite its immense
value, iNaturalist data is not immediately AI-ready. Crucially, iNaturalist applies no criteria for
image quality in its assessment. As illustrated in Figure 1, Research Grade observations may include
harvested specimens (top-left), partial views or non-representative angles (bottom-left), or images
that are heavily blurred or poorly exposed (right). While the Research Grade label implies taxonomic
confidence, the corresponding images often vary dramatically in visual fidelity—posing a major
challenge for biodiversity AI systems that depend on consistent, high-quality visual input. Both
researchers and community members have called for incorporating image quality into the Research
Grade standard [33]. However, manually assessing the enormous volume of existing observations is
infeasible, underlining the need for automated approaches to filter low-quality images in biodiversity
datasets.

1https://github.com/wakizasher/iNaturalist_Benchmarking

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Tackling Climate
Change with Machine Learning.
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Figure 1: Examples of iNaturalist Research Grade low-quality images associated with Bellis perennis:
(top-left) harvested; (bottom-left) non-representative; (right) blurry.

In this paper, we introduce BIOCLEANSE, a data preprocessing pipeline designed to improve the
visual quality of biodiversity datasets for AI applications. BIOCLEANSE extends iNaturalist’s
Research Grade data with three complementary image quality filters: (1) poor composition (e.g., blur,
under/overexposure), (2) human presence (e.g., hands, body), and (3) multiple-species interference.
To detect these, we combine traditional image quality heuristics with modern Vision-Language Model
(VLM)-based image quality assessment (IQA). We evaluate BIOCLEANSE on a zero-shot benchmark
using state-of-the-art biodiversity biodiversity fine-tuned models applied to three visually similar
plant species. Our results show that automated image curation significantly improves model reliability
and scientific inference in biodiversity AI. Our main contributions are:

• BIOCLEANSE: a ready-to-use, open-source image quality preprocessing pipeline for biodi-
versity datasets;

• A new benchmark demonstrating the impact of image quality on species identification for
visually similar plant species.

The remainder of the paper is organized as follows: Section 2 introduces the BIOCLEANSE pipeline
and reviews related work. Section 3 presents the benchmark design, experimental results, and
discussion. Section 4 outlines our conclusions and future directions. Additional information, imple-
mentation details, extended results, and data access instructions are provided in the Appendix.

2 BioCleanse vs. other IQA related work

Image quality assessment (IQA) methods vary across domains, as summarized in Table 1 and detailed
in Appendix D. In biodiversity, subjective approaches such as manual annotation have been used [36],
while medical imaging often relies on objective [15] or full-reference techniques like PSNR and
SSIM [5]. No-reference methods, such as pyBRISQUE [4] and UIQA [11], estimate image quality
using only the input image—without requiring a reference—making them especially well-suited for
uncontrolled, real-world datasets like those from citizen science platforms. These methods typically
rely on statistical patterns found in natural scenes, and are efficient for large-scale automated filtering.
More recently, Vision-Language Models (VLMs) like IQAGPT [12] and DepictQA [56] have enabled
semantic-aware image quality filtering, though their application in biodiversity remains limited.

To address this, we introduce BIOCLEANSE, a modular pipeline for curating high-quality biodiversity
image datasets through three stages: (1) data preparation, (2) no-reference IQA using NIQE [39], and
(3) semantic filtering via Vision-Language Models (VLMs). NIQE is preferred for its sensitivity to
deviations from natural scene statistics, making it well-suited for noisy, large-scale datasets [4, 11].
VLMs automate manual assessments [36] by detecting issues such as human presence, other taxa, or
poor framing using structured prompts (see Table 2). The pipeline is model-agnostic and supports
any VLMs [3, 31, 34] (see Appendix E).
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Table 1: IQA-related work.

Technique Domain Study IQA Target task

Subjective Biodiversity (2023) Luccioni et al. [36] Manual assessment Biodiversity reporting
Objective Medical (2016) Chow et al. [15] IQA on ultrasonic images Diagnostic imaging
Full-reference Medical (2024) Breger et al. [5] PSNR and SSIM Tumor segmentation
No-reference Biodiversity (2022) Billotte [4] pyBRISQUE Species classification
No-reference Biodiversity (2023) Chen et al. [11] UIQA Underwater object recognition
VLM Medical (2023) Chen et al. [12] IQAGPT Radiology report generation
VLM General (2024) You et al. [56] DepictQA General-purpose image retrieval

Table 2: Quality measures employed with VLM prompt questions. Questions are according to the
manual assessment of image composition from Luccioni et al. [36].

Quality measure Prompt question

Composition Q1 Does the image’s blurriness or perspective prevent identification of the flower? Answer with ’Yes’ or ’No’ only.
Human present Q2 Does this image show any humans or identifiable human body parts (including, but not limited to, faces, hands, fingers, arms,

legs, torsos, or silhouettes)? Answer with ’Yes’ or ’No’ only.
Other species present Q3 Does the image’s blurriness or perspective prevent identification of the flower? Answer with ’Yes’ or ’No’ only.

3 Benchmarks

We employ a quantitative experimental design to evaluate how iNaturalist image quality impacts
the zero-shot classification performance of state-of-the-art biodiversity CLIP models. Central to
this process is the use of the BIOCLEANSE pipeline, which curates image subsets based on both
statistical and semantic quality assessments before benchmarking. All ethical concerns are addressed
in Appendix A.

Data collection We focus on three visually similar plant species as illustrated in Figure 2 (see
more datasets and benchmarks in Appendix C). These species share overlapping habitats, similar
floral structures, and frequently co-occur in ecosystems, making them a compelling test case for
evaluating how image quality influences model performance in visually ambiguous scenarios [44].
From approximately 114K Research-Grade iNaturalist observations geographically restricted to
Europe, we randomly sample 600 images (200 per species).

Curation pipeline Image quality is assessed using the NIQE algorithm (threshold=6, top 5% worst
scores) and the Qwen2.5-VL-Instruct VLM (3B) [49] for semantic filtering, using binary prompts
for blurriness, human presence, and other species (see Table 2). Based on these assessments, we
compose filtered subsets as shown in Table 4.

Experimental setup We evaluate two state-of-the-art biodiversity fine-tuned foundation models
BIOCLIP (ViT-B/16) and BIOTROVECLIP (see Appendix G). We report standard metrics (e.g.

Figure 2: Example images of Bellis perennis, Matricaria chamomilla, Leucanthemum vulgare of
different qualities. The last three columns showcase the BIOCLEANSE image quality issues: (1)
composition (blurry/angles), (2) human presence (hand, body), and (3) other species presence.
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Table 3: Qwen VLM assessments for image attributes, averaged over 3 seeds, N=600.

Attribute assessed Response ’Yes’ Response ’Yes’ Response ’No’ Response ’No’
(Count) (%) (Count) (%)

Composition 4.33 0.69% 594 99.28%
Human presence 27 4.50% 573 95.50%
Other species present 83 13.82% 517 86.14%

Table 4: Mean accuracy (%) across three seeds.

Filtering condition BIOCLIP
Acc. (%) ± SE

BIOTROVECLIP
Acc. (%) ± SE # Images

Unfiltered 93.33 ± 0.76 85.22 ± 0.29 600
Higher Perceptual Quality (NIQE < 6) 93.60 ± 0.83 85.48 ± 0.35 576
Lower Perceptual Quality (NIQE > 6) 88.77 ± 2.91 79.77 ± 1.92 24
VLM: Blurry/Bad Composition 83.33 ± 16.6 70.24 ± 10.5 4
VLM: Human Presence 92.84 ± 0.25 80.99 ± 2.21 27
VLM: Other Taxa Present 91.67 ± 0.70 81.07 ± 0.31 83
VLM-Curated "Good Quality" 92.37 ± 0.29 81.54 ± 0.42 109
Combined "Ideal" (VLM Clean + NIQE < 6) 93.69 ± 0.92 86.20 ± 0.48 471
Combined "Worst-Case" (VLM Flagged + NIQE > 6) 88.89 ± 11.1 58.33 ± 12.7 3

Accuracy, Precision, Recall, F1), and confidence scores for both correct and incorrect predictions and
analyze statistical significance with Z-tests, t-tests, and Levene’s variance tests. All experiments are
conducted on a consumer desktop (AMD Ryzen 5 7600XT, 32GB RAM, Radeon RX 7600XT GPU,
Python 3.12).

Results Using the BIOCLEANSE pipeline, 96% of images scored below the NIQE threshold of 6,
indicating high perceptual quality. VLM-based filtering flagged 0.7% for poor composition, 4.5% for
human presence, and 13.8% for presence of other taxa (see Table 3 and detailed results in Appendix
H). As shown in Table 4, BIOCLIP consistently outperformed BIOTROVECLIP, achieving 93.3%
accuracy on unfiltered data versus 85.2%. Filtering had minimal impact on overall performance
for both models, though extreme cases (e.g., poor NIQE and multiple taxa) reduced accuracy
and confidence. Leucanthemum vulgare was frequently misclassified, especially under low-quality
conditions, while Bellis perennis was consistently well-identified. Strict filtering sometimes decreased
performance due to loss of useful context, suggesting both models, especially BIOCLIP, are robust
to moderate image imperfections.

Our findings demonstrate that while advanced vision-language models like BIOCLIP and BIOTROVE-
CLIP show strong performance on biodiversity image classification, their behavior under filtered data
conditions is nuanced. For high-performing models like BIOCLIP, pre-filtering for ideal conditions
(e.g., high NIQE scores or VLM-cleaned images) yields limited benefits, suggesting that performance
bottlenecks stem more from inherent visual similarity between taxa than from image noise. In
contrast, BIOTROVECLIP showed greater sensitivity to difficult conditions and a tendency toward
overconfident misclassifications, highlighting differences in robustness and confidence calibration.
Importantly, flower images used in this study are relatively high quality due to their ease of capture,
so results may not generalize to more challenging taxa like insects. Despite limitations, automated
pipelines like BIOCLEANSE offer a scalable and consistent alternative to subjective manual filtering,
making them a valuable tool for preparing large-scale citizen science datasets for biodiversity AI.

4 Conclusion

We presented BIOCLEANSE, an open-source preprocessing pipeline for filtering biodiversity images
using both NIQE and VLMs IQA, enabling automated removal of common issues such as poor
composition, human presence, and multiple taxa. Applied to iNaturalist’s Research Grade data, and
evaluated on three visually similar plant species using two state-of-the-art CLIP-style foundation
models, BIOCLEANSE proved valuable not for uniformly improving accuracy, but for exposing
model-specific sensitivities under real-world conditions. However, our study is limited by its narrow
focus on flowering plants in similar visual conditions, a relatively small sample size (600 images),
and the exclusion of other life stages or diverse habitats (e.g., underwater environments), which
may affect generalizability and pipeline robustness. We invite the biodiversity and machine learning
communities to employ BIOCLEANSE on additional species, building more robust, generalizable
AI-ready biodiversity data, and ultimately accelerate ecological research and conservation efforts.
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A Ethical concerns

License Only images released under a Creative Commons (CC) license are included, ensuring that
the dataset is openly available for public research and non-commercial use.

Offensive content Although iNaturalist rely on community contributions and expert moderation
to uphold data quality and appropriateness, we acknowledge that our dataset may occasionally
feature unsettling content such as predation, roadkill, or other scenes from the raw realities of nature.
Rather than sanitize these instances, we retain them to preserve the ecological authenticity of species
interactions and the unfiltered diversity of real-world observations.

Privacy We strictly exclude all personally identifiable information (PII) from the metadata associated
with the dataset, ensuring that fields such as observer names and email addresses are removed.
However, we acknowledge that in rare cases, PII may still be visible within the image content itself;
for example, faces of individuals, vehicle license plates, distinctive property features, or GPS location
markers embedded in the media. While such occurrences are unintended and infrequent, users of the
dataset should be aware of this residual risk when analyzing or displaying images.

Responsible use Models trained on this data should not be used for unlawful wildlife tracking or
poaching; we provide the data to support conservation efforts and ecological research.

Geoprivacy We do not include any geolocation metadata in our dataset. This aligns with best
practices for safeguarding both ecological integrity and user privacy.

Large Vision-Language models (LVLMs) privacy leakage LVLMs are trained on broad, web-scale
data and may have inadvertently memorized sensitive content—such as faces, license plates, or
location indicators—embedded in images. Although our pipeline does not involve fine-tuning and
uses only publicly accessible images (e.g., iNaturalist), we acknowledge that using such models can
still pose residual risks. Specifically, VLMs may surface private or identifying visual features during
inference, even if that information was not explicitly included in the dataset.

B Quality assurance in iNaturalist

Observations on iNaturalist are categorized into "Casual", "Needs ID", or "Research Grade", reflecting
varying levels of data quality and the progression through the community identification process.
The "Research Grade" designation signifies that an observation has achieved a level of data quality
and taxonomic consensus deemed suitable for scientific research. These observations are frequently
incorporated into major online biodiversity databases, such as the Global Biodiversity Information
Facility (GBIF) and the Atlas of Living Australia, underscoring their utility in a broader scientific
context. The term "Research Grade" is widely recognized and utilized within the scientific community
and among citizen scientists, despite ongoing discussions regarding its precise implications for
absolute data accuracy. It functions as a key filter for researchers seeking higher quality citizen
science data [52].

Before an observation can achieve "Research Grade" status, it must be classified as "Verifiable". This
initial classification establishes a baseline level of data quality essential for subsequent community
assessment. A verifiable observation must include specific metadata to provide sufficent context
for identificaiton and validation. These include: a recorded date of observation, georeferenced
coordinates (latitude and logitude) and accompanying photos or sound recordings as empirical
evidence of the observed organism. While an observation can be created without media, it is a strict
requiremnt for verifiability and progression to Research Grade.

The enforcement of these basic data completeness requirements is a fundamental building block of
iNaturalist’s quality control process. Without a date, location, and supporting media, an observation
cannot enter the "Needs ID" queue, let alone progress to "Research Grade". This structured data input
ensures that observations provide sufficient contextual information for accurate identification and
validation by the community. This initial baseline of data quality is crucial for the subsequent steps of
the Research Grade process and for the utility of the data when incorporated into external databases
like GBIF. It is also important for users to provide clear, multiple photos from different angles to
aid identification, as poor quality or insufficient imagery can hinder an observation’s progression to
Research Grade [24].

8



Following initial verifiability, observations enter the "Needs ID" status, where they await input from
the iNaturalist community. This phase is central to the platform’s crowd sourced quality control.
Registered users actively participate by adding identifications to observations, aiming to confirm
or refine taxonomic assignments. An observation typically progresses to Research Grade when a
robust consensus is achieved among identifiers. Specifically, more than two-thirds (2/3) of identifiers
must agree on a species-level identification or a finer taxonomic resolution [26]. This rule implies a
minimum of two agreeing identifications for a secies-level ID to be considered for Research Grade.

This 2/3 agreement rule serves as a core mechanism for quality control, leveraging the collective
knowledge of the user base. However, the effectiveness of this crowdsourced expertise is subject
to certain limitations. While the system aims for broad consensus, the quality of this consensus is
heavily reliant on a relatively small cohort of expert or highly active identifiers. A significant portion
of iNaturalist’s 2.5 million users primarily contribute observations, with less than 1% focusing solely
on identifications, and only 7% engaging in both [7]. Furthermore, a small subset of highly active
users is responsible for the vast majority of identifications. This dependence on a concentrated group
of identifiers suggest a potential vulnerability: if these key individuals exhibit biases or are less active
in specific taxonomic groups or geographical regions, the accuracy and speed of Research Grade
assignment could be affected. This indicates that "Research Grade" primarily reflects community
agreement, not an absolute guarantee of expert validation for every individual observation, although
experienced identifiers do vet most records.

It is important to understand that while "Research Grade" is explicitly linked to scientific use, it does
not guarantee absolute accuracy or flawlessness. Multiple sources indicate that the quality grade itself
may be an inadequate proxy for accuracy, emphasizing the continued importance of expert verification.
This understanding is critical for researchers, as it implies that Research Grade observations, while
having undergone significant vetting, are not exempt from further quality control or expert veiew
in specific research applications. The designation primarily indicates that an observation has met
iNaturalist’s internal criteria for verifiability and community consensus, making it potentially suitable
for research, but not necessarily validated for every specific scientific application. This encourages
critical engagement with the data rather than uncritical acceptance.

B.1 iNaturalist Image Quality

Artificial intelligence, specifically computer vision (CV), plays an increasingly integral role in
the iNaturalist identificaiton process, significantly impacting efficency and accuracy. iNaturalist
incorporates an automated species identification tool that provides identification suggestions to users
based on uploaded photos or sounds. The CV model is trained on a vast dataset of existing iNaturalist
observations, comprising photos and their associated taxa. It generates a ranked list of potential taxa,
with the most probable suggestion presented at the top. If the model is less certain about a specific
species, it often provides a broader taxonomic suggestion, such as genus or family. The CV also
leverages location data, prioritizing matches expected to occur nearby, although it can also perform
global searches if local matches are not strong.

The integration of computer vision significantly streamlines the identification process and has
contributed to a rapid decrease in the time observations take to reach Research Grade [8]. However,
this technological acceleration also presents potential challenges. Concerns have been raised regarding
the accuracy of CV suggestions, with some users reporting instances where suggestions for certain
species appear to be "getting worse". There is also a recognized risk that new or inexperienced
users might "blindly agree" with CV suggestions without critical assessment, potentially leading
to inaccurate data entering the Research Grade pool. This situation highlights a trade-off between
the efficiency gained through automation and the maintenance of data accuracy, underscoring the
continued necessity of human verification and "course correction" by experienced identifiers. The
quality of Research Grade observations is particularly crucial, as these data are used to train the CV
model, creating a feedback loop where incorrectly identified Research Grade data can negatively
impact the CV’s future performance.

The dual nature of iNaturalist’s "Research Grade" status—a community consensus metric that does
not guarantee absolute scientific accuracy, coupled with the known limitations of its internal computer
vision system and the inherent variability of citizen science data—creates a significant need for
external, objective image quality assessment. This need extends beyond merely making pictures "look
good"; it is fundamentally about enhancing the scientific utility and reliability of the vast dataset.
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This could involve identifying observations that are visually ambiguous despite having achieved
community consensus, or conversely, prioritizing "Needs ID" observations that possess high visual
quality but are awaiting expert taxonomic review.

C Existing biodiversity datasets & benchmarks

Table 5: Biodiversity datasets using Research Grade iNaturalist observations as main data source.

Datasets Images Species Annotations Source

BIOTROVE [53] 161.9M 366.6K common, scientific terms,
taxonomic hierarchies iNaturalist

TREEOFLIFE-10M [47] 10.4M 454.1K common, scientific terms,
taxonomic hierarchies

iNaturalist,
Encyclopedia

of Life (EOL)[18],
BIOSCAN-1M[21]

INAT2024 [51] 4.9M 9K common, scientific term,
taxonomic hierarchies, location iNaturalist

TAXABIND-8K [42] 8.8K 2.2K

common, scientific term,
taxonomic hierarchies, location,

environmental features,
audio recordings, satellite

imagery

iNaturalist,
iNat2021[50],
Santinel-2[16],

WorldClim-2.1[19]

Table 6: Existing benchmarks of visually difficult to distinguish species. Our new benchmark is
described in Section 3 Data collection.

Taxon Benchmark Images Species Annotations Source

Aves AMAZON PARROTS [27] 14K 35 scientific terms iNaturalist, eBird [17],
Google Images

Insecta

BUMBLE BEES [45]
(not publicly available) 89K 36 scientific terms iNaturalist, Bumble Bee

Watch [23], BugGuide [6]

CONFOUNDING SPECIES [13]
(not publicly available) 100 10 scientific term iNaturalist

Mammalia CHIROPTERA RHINOLOPHIDAE
RHINOLOPHUS [10] 293 7 scientific terms personal collection

during field surveys

Reptilia

SEA TURTLES [1]
(not publicly available) 6.9K 36 vernacular,

scientific terms Internet

SQUAMATA LACERTIDAE
PODARCIS [40] 4.0K 9 scientific terms personal collection

during field surveys

D IQA related work

D.1 Subjective and objective IQA

Subjective and objective IQA [9] plays a critical role in various domains, including biodiversity
monitoring and medical imaging, where accurate interpretation of visual data is essential. In biodiver-
sity research, subjective IQA often involves human observers evaluating the perceptual quality of
images used for species identification or habitat analysis. This approach can be particularly useful
when automated metrics fail to capture nuances that are visually clear to experts. For example, [36]
critically examines ImageNet-1k [28]. This paper specifically looks at 13K wild animal images
from 269 classes. The key aspect of this study is that they involved expert annotators; for instance,
the images of primates were annotated by two postdoctoral researchers in primate biology and one
zoo keeper specializing in primates [35]. The interest in objective image quality assessment (IQA)
has been growing at an accelerated pace over the past decade. This field is dedicated to developing
automatic methods that can predict the subjective quality of image, effectively mimicking human
perception without requiring human intervention for every evaluation. In the field of medicine,
objective IQA is used to evaluate the performance of images captured by medical equipment such
as MRI, CT and X-ray systems. The work of Li Sze Chow suggest the usage of Objective IQA to
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ensure that diagnostic images maintain sufficient clarity and detail for accurate interpretation [15]. In
biodiversity context the objective IQA is used for assessment of images that are suffer from unique
types of degradation such as images that are made underwater. The work of Tianhai Chen introduce a
specialized, intelligent system that evaluates underwater image quality by thinking about how humans
see those images and by looking for very specific features that reveal common underwater problems
such as murkiness and color distortion [11].

D.2 Full-reference IQA (FR-IQA)

Full-reference image quality assessment (FR-IQA) [29] is a widely utilized approach in image
processing that evaluates the perceptual quality of a distorted or test image by comparing it with a
reference image, which is assumed to be undistorted [41]. This method is particularly relevant in
fields where high fidelity and accuracy are essential, such as medical imaging. FR-IQA techniques
often rely on metrics like Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), and more advanced models that incorporate low-level and high-level image. In the medical
context, FR-IQA can be used to measure the effectiveness of different reprocessing steps. In the
work of D. Swainson Sujana a perfect version of image ("ground truth") was used to improve the
quality of medical images, specifically sMRI (structural Magnetic Resonance Imaging), before they
are used to train deep learning AI models for diagnosis [48]. In their work they state that while deep
learning AI is great for medical diagnosis, especially with radiology images, they need huge amount
of high-quality data to learn effectively, that is why additional preprocessing steps are necessary.

On the other hand, The study of Anna Breger warns that blindly applying full-reference image quality
techniques and can lead to flawed conclusions [5]. The research provides a comprehensive collection
of examples where PSNR and SSIM fail to accurately assess the quality of various real-world medical
images.

In the context of citizen science biodiversity data FR-IQA methods such as PSNR and SSIM, face
extreme limitations and are near-totaly inapplicable. The primary limitation is the fundamental
absence of reference images. Citizen science platforms like iNaturalist accumulate images captured
by valunteers in uncontrolled, real-world environments [55]. Each photograph represents a unique
instance of an organism at a specific moment in time, under unique lighting conditions, with a unique
background, and subject to various unpredictable factors like motion, focus, and occlusion. For such
"in-the-wild" captures, a "pristine" or "original" reference version of that exact observation simply
does not exist and cannot be created retrospectively. Given these profound limitations, the focus for
assessing citizen science biodiversity image quality must necessarily shift to paradigms that do not
require a reference image such as no-reference image quality assessment.

D.3 No-reference IQA (NR-IQA)

On the other hand, no-reference image quality assessment (NR-IQA) offers an alternative when
a pristine reference image is unavailable. It is also commonly referred to as Blind IQA (BIQA),
involving methods that evaluate the quality of an image using only the information conained within
the image itself, without access to any corresponding "ground truth" image [54]. One of the most
popular and widely used NR-IQA models is Natural Scene Statistics (NSS). They are based on the
observation that high-quality natural images exhibit certain statistical properties. Distoritons are
assumed to dirupt these inherent statistics in predictable ways [54].

NR-IQA NSS base models such as NIQE [39] and BRISQUE [38] are common for different computer
vision tasks - for example, segmentation, classification, and object detection in intelligent sensing
systems [57]. Moreover, digital photography and camera applications benefit from the NR-IQA
techniques. In the work of Min Goo Choi, the researchers focused on two common image problems:
blur and noise. The study’s experiment showed that their proposed method has a high correlation
with human judgment and requires very little computational effort, making it efficient to use [14].

D.3.1 Natural image quality evaluator (NIQE)

NIQE aims to be "opinion-unaware," meaning it does not require training on human-rated distorted
images. It extracts a set of local features (derived from image patches) that model salient statistical
properties found in natural scenes. These features from a test image are fitted to a Multivariate
Gaussian (MVG) model [30]. The quality of the test image is then determined by measuring the
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distance (e.g., Mahalanobis distance) between its MVG model and a pre-learned MVG model derived
from a corpus of high-quality, pristine natural images. A smaller NIQE score typically indicates
better perceptual quality [58].

D.4 Visual language models (VLMs)

Vision Language Models (VLMs) such as Qwen-VL [2] and LLaVA [32] have emerged as powerful
tools for image quality analysis across a range of domains, including biodiversity and medicine.
These models combine the capabilities of vision encoders with large language models (LLMs),
enabling them to interpret visual content while generating descriptive, linguistically rich responses.
In the medical domain, the research of Zhihao Chen proposes a novel AI system called IQAGPT that
leverages the power of large vision-language models and language models to automatically assess the
quality of medical CT images. It combines a VLM that "captions" image quality with ChatGPT to
generate both numerical quality scores and detailed textual reports [12].

In broader applications, VLMs have been adapted for general-purpose image quality assessment
using datasets that span multiple domains. For example, DepictQA leverages Multi-modal Large
Language Models (MLLMs), which can understand both images and text. It explains what is wrong
with the image (e.g., "blurry background," "noisy shadows"), and it can explain why one image might
be better or worse than another, mimicking human reasoning. The results showed that DepictQA
performs better than traditional score-based IQA methods on several benchmark tests [56].

D.5 iNaturalist IQA

iNaturalist employs several strategies to ensure the quality of uploaded images, which are crucial for
accurate species recognition and research-grade observations. One of the primary methods involves
encouraging users to submit high-quality photographs that are well-lit and sharply focused on the
subject, particularly important for distinguishing morphological features in plants and animals [37].
The platform also provides guidelines for users on best practices for taking and submitting photos,
including avoiding blurry images and ensuring that key diagnostic features are visible [22][46]. These
user-oriented recommendations serve as a preliminary filter for image quality before upload. The
work of Sarah J. Ackland identifies the problem of data quality on iNaturalist platform. One of the
issues is low quality media: photos or other uploaded evidence might be unclear or insufficient. The
results underscore the vital role of expert verification when using citizen science data for media
quality assessment. However, there are some limitations and challenges. For example, it takes a lot of
effort to manually check each record. Moreover, the individual doing the verification might introduce
their own subjective biases [8].

However, with enormous amounts of natural data images the platform lack the transparent quality
control. Jackie Billotte attempted to create more reliable iNaturalist public data for ecological
research and education [20]. His work provides a protocol for the quality assessment of downloaded
observations from iNaturalist. The image quality assessment is performed with NR-IQA BRISQUE
algorithm on the dataset containing spiders (Araneae) [4].

While existing NR-IQA methods and VLMs are valuable tools for accessing image quality, their
application to biodiversity citizen science data remains unexplored. The BIOCLEANSE pipeline
addresses these gaps by integrating NR-IQA for quantitative quality control with VLM-driven
semantic content evaluation, creating a scalable, reference-free framework. This hybrid approach
leverages the strengths of both paradigms while mitigating their individual limitations.

E BioCleanse pipeline

The BIOCLEANSE pipeline comprises sequential stages: (1) data preparation, (2) quantitative quality
assessment, and (3) semantic content filtering (see Figure 3).

E.1 Quantitative quality assessment

Our BIOCLEANSE pipeline uses a NR-IQA technique. Natural, high-quality images of nature,
like flowers, follow predictable statistical patters. When an image is distorted (blurry, noise, or
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Figure 3: Workflow for BIOCLEANSE. The piplene assesses the quality of the images using NIQE
and QWEN VLM. The model requires image directory (can be both local or in the cloud) with
annotated .csv file which contain the "ground truth" for each observation as well as file path. Before
data is loaded to the model, the statistic image assessment and semantic content evaluation take place
to filter out poor quality images.

compressed), these natural patterns are disrupted, allowing an NR-IQA algorithm to identify it as a
lower quality.

For our pipeline example we used NIQE algorithm. Unlike some other NR-IQA methods like
BRISQUE that are trained on images with human-assigned quality scores, NIQE is opinion-unaware
making it a suitable choice for domain specific evaluation of images. It builds its understanding
of "good" quality directly from the statistical patterns found in a wide variety of natural images,
without specific training on distorted examples or human preferences. This makes NIQE robust
solution, especially in biodiversity context where the types of distortions may not be well-represented
in existing training datasets.

A crucial aspect of quality control with NIQE is setting a quality threshold for the images. Images
with a NIQE score above this threshold should be considered not suitable for further analysis and
should be filtered out. This threshold is not fixed and it can be adjusted by the user. This flexibility
allows researchers to customize the quality based on their specific research needs. For instance, in
our pipeline a threshold of 6 was set. Analysis of the NIQE score distribution, visualized through box
plot, revealed that scores of 6 or higher were above the 95th percentile. This statistical representation
indicated that these images represented the lowest quality outliers in the dataset.

E.2 Semantic content filtering

The final stage of the BIOCLEANSE pipeline uses a modular approach to content-based filtering,
using the capabilities of VLMs. This design ensures flexibility, allowing for the integration of any
suitable VLM to perform detailed semantic assessments of image quality. Although the QWEN 2.5
VL 3B model was used in this prototype, the architecture supports integration of other VLMs, such
as LLaVA, DeepSeek VL, or custom-trained models, depending on specific project requirements and
computational resources.

It is important to note that, for the purpose of this pipeline, these VLMs are not fine-tuned on
biodiversity-specific datasets. Their broad understanding allows them to work effectively on various
images without requiring specific adaptation for each new domain. This approach allows flexibility
of the pipeline and reduces the computational overhead associated with fine-tuning.

According [36], the experts propose to validate images according to quality measures described in the
Table 2. Images are queried with "Are humans present in the image?"; images where human presence
is detected are excluded to ensure the focus remains on the biodiversity subject. Images are further
assessed with "Is the image too blurry or low quality to allow identification?". This complements
the NIQE assessment by adding a semantic understanding of blurriness or low resolution in the
context of species identification. Images flagged as too poor for identification by the VLM are
removed. This VLM-driven filtering step aims to remove images with distracting elements or those
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where the primary subject is not clearly visible, thereby improving the image dataset for training
biodiversity-focused AI models.

F Data collection

Figure 4: Selected plant: Bellis perennis, Chamomilla (aggregatio) or Matricaria chamomilla, and
Leucanthemum vulgare. Photos are crops randomly sampled from EWD [43].

We select three flowering plant species from the Asteraceae family: Bellis perennis (Common Daisy),
Matricaria chamomilla, and Leucanthemum vulgare (Ox-eye Daisy). Example images for each species
of different qualities are illustrated in Figure 2. These species were selected due to their morphological
similarities, frequent co-occurrence in European ecosystems, and their potential to challenge AI
identification models [44]. Observational data, specifically Research Grade records, were sourced
exclusively from the iNaturalist platform, with data acquisition geographically constrained to Europe
to maintain a degree of environmental consistency. Metadata for each observation, including image
URLs, unique identifiers, quality grade, observation timestamps, geolocation data, user identifiers,
and scientific names, were collected. From an initial pool of 114K Research Grade observations,
3-distinct random subsets comprising 600 images each (200 per species) were collected.

G Models

Vision foundation models (VFMs) have demonstrated remarkable success across diverse applications
in computer vision. Their capacity to learn generalizable representations from extensive datasets
makes them promising for complex tasks in biodiversity observation. This section reviews key
VFMs, specifically CLIP, BIOCLIP [47], and BIOTROVE-CLIP [53], highlighting their relevance
to automating and enhancing biodiversity research.

OpenAI’s CLIP (Contrastive Language-Image Pre-training) learns to associate images with their
corresponding textual descriptions in an unsupervised manner. Its architecture comprises an image
encoder (e.g., RESNET, VIT) and a text encoder (e.g., Transformer), jointly trained to maximize
the similarity between embeddings of matching image-text pairs. Trained on a massive dataset of
internet-sourced image-text pairs, CLIP generalizes to unseen images and descriptions.

CLIP’s zero-shot capabilities hold significant potential for biodiversity observation, enabling image
classification based on textual descriptions of species without explicit training. This is particularly
useful given the challenges of discovering new species and the impracticality of collecting large
labeled datasets for every species. However, CLIP’s reliance on internet-sourced data may introduce
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biases, and its capacity to handle fine-grained distinctions between visually similar species can be
limited.

BIOCLIP [47] is specifically designed for biological image analysis. Recognizing that general-
purpose VFMs like CLIP may not be optimally suited to the nuances of biological data, BIOCLIP
aims to learn representations attuned to the specific characteristics of biological imagery. It is trained
on a dataset of biological images with associated textual descriptions, emphasizing the model’s ability
to learn fine-grained visual features and understand semantic relationships between biological entities.
BIOCLIP has demonstrated improved performance compared to general-purpose VFMs on biological
image classification tasks and is designed to better capture the hierarchical structure of biological
taxonomy.

BIOTROVE-CLIP [53] is a family of vision-language foundation models developed using the
BIOTROVE-40M dataset, a large-scale collection of biodiversity images from the iNaturalist platform.
BIOTROVE-CLIP aims to leverage this community-sourced data, addressing its inherent challenges.
The BIOTROVE-TRAIN dataset is larger and more taxonomically diverse than many other biological
image datasets.

BIOTROVE-CLIP addresses the challenges of noisy iNaturalist data, which exhibits variations in
image quality, annotation accuracy, and taxonomic consistency, by utilizing expert-verified subsets,
developing robust training strategies, and leveraging textual information. BIOTROVE-CLIP demon-
strates the potential of leveraging large-scale, community-sourced data for biodiversity assessment.
Its strong generalization performance across diverse datasets highlights its ability to learn robust
representations of biological diversity. However, BIOTROVE-CLIP also faces challenges, including
potential biases, difficulties in handling fine-grained distinctions, and the need for continued research
into improving accuracy and reliability when training on noisy data.

H Extended results

H.1 Code

All source code, preprocessing scripts, and data needed for full reproducibility are publicly available
at our project repository: github.com/wakizasher/iNaturalist_Benchmarking.

H.2 VLM-based image content assessment

The Qwen2.5-VL-Instruct VLM was employed to evaluate semantic content attributes for each of the
600-image seed datasets. For the Seed 42 dataset (Table 3), human presence was detected in 4.5%
(27 images) of the observations. Images flagged as "Blurry/Unidentifiable" constituted a very small
fraction, at 0.6% (4 images). The presence of "Other Taxa" was more common, identified in 12.0%
(72 images) of this seed.

In the Seed 123 dataset, similar proportions were observed: human presence was noted in 4.1% (25
images) , while "Blurry/Unidentifiable" images were again minimal at 0.3% (2 images). "Other Taxa
Present" were identified in 13.1% (79 images) of the Seed 123 observations (Table 3).

Table 7: Qwen VLM assessments for image attributes (seed 42, N=600).

Attribute Assessed Response ’Yes’ Response ’Yes’ Response ’No’ Response ’No’
(Count) (%) (Count) (%)

Composition 4 0.6% 596 99.3%
Human Presence 27 4.5% 573 95.5%
Other Taxa Present 72 12.0% 528 88.0%

For the Seed 456 dataset, human presence was detected in 4.5% (27 images). The
"Blurry/Unidentifiable" characteristic was slightly more frequent in this seed at 1.16% (7 images).
"Other Taxa Present" was the most prevalent of the flagged attributes, identified in 16.3% (98 images)
of the Seed 456 images (Table 5). These VLM assessments formed the basis for several subsequent
filtering conditions aimed at understanding model sensitivity to these specific content characteristics.
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Table 8: Qwen VLM assessments for image attributes (seed 123, N=600)

Attribute Assessed Response ’Yes’ Response ’Yes’ Response ’No’ Response ’No’
(Count) (%) (Count) (%)

Composition 2 0.3% 593 99.7%
Human Presence 27 4.5% 573 95.5%
Other Taxa Present 79 13.16% 521 86.83%

Table 9: Qwen VLM assessments for image attributes (seed 456, N=600)

Attribute Assessed Response ’Yes’ Response ’Yes’ Response ’No’ Response ’No’
(Count) (%) (Count) (%)

Composition 7 1.16% 593 98.83%
Human Presence 27 4.5% 573 95.5%
Other Taxa Present 98 16.3% 502 83.6%

Table 10: NIQE assessments for image attributes seed 42 (N=600)

Attribute Assessed NIQE > 6 NIQE > 6 NIQE < 6 NIQE < 6
(Count) (%) (Count) (%)

Evaluation 30 5% 570 95%

Table 11: NIQE sssessments for image attributes seed 123 (N=600)

Attribute Assessed NIQE > 6 NIQE > 6 NIQE < 6 NIQE < 6
(Count) (%) (Count) (%)

Evaluation 29 4.83% 571 95.16%

Table 12: NIQE assessments for image attributes seed 456 (N=600)

Attribute Assessed NIQE > 6 NIQE > 6 NIQE < 6 NIQE < 6
(Count) (%) (Count) (%)

Evaluation 12 2% 588 98%
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