

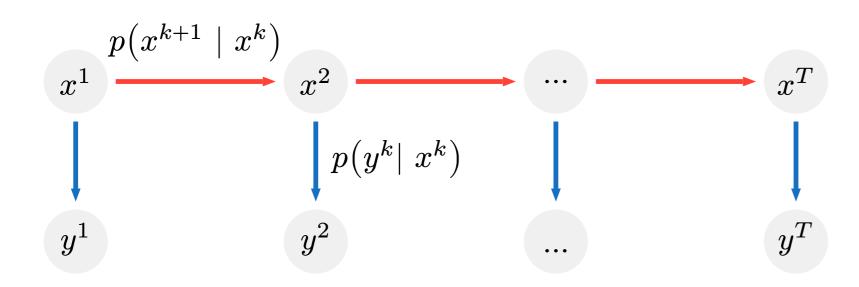
Training-Free Data Assimilation with GenCast

Thomas Savary, François Rozet and Gilles Louppe

TL;DR Data assimilation refers to a set of algorithms used to estimate the state of a dynamical system by combining model predictions with observations. In this work, we show that diffusion-based emulators can be efficiently applied to this task without additional training.

Problem statement

One of the goal of data assimilation, known as filtering, is to estimate the state of a discrete time Markovian dynamical system from past and present observations $y^{1:k}$, that is to approximate the posterior distribution $p(x^k \mid y^{1:k})$.



To do so, we assume a pretrained diffusion model that defines the transition law

$$x^{k+1} \sim p(x^{k+1} \mid x^k),$$

together with an observation operator H and covariance Σ_y specifying the likelihood of the observations

$$p(y^k \mid x^k) = \mathcal{N}(y^k \mid H(x^k), \Sigma_y).$$

Methodology

Particle filter approximation

Particle filter approximates $p(x^k \mid y^{1:k})$ by a discrete measure $\mu_x^k = \sum_{i=1}^N w_i^k x_i^k$ such that the following converges weakly

$$\sum_{i=1}^{N} w_i^k g(x_i^k) \xrightarrow[N \to +\infty]{} \int g(x^k) p(x^k \mid y^{1:k}) dx^k.$$

They can handle strongly nonlinear dynamics but suffer from particle degeneracy.

Sampling from the optimal proposal

Degeneracy is caused by weights variance, which is minimized by sampling particles from the optimal proposal $p(x^{k+1} \mid x^k, y^{k+1})$ using the posterior score $\nabla_{x_t^{k+1}} \log p(x_t^{k+1} \mid x^k, y^{k+1})$ during the diffusion process

$$dx_t^{k+1} = \left\lceil f_t x_t^{k+1} - \frac{1+\eta^2}{2} g_t^2 \nabla_{x_t^{k+1}} \log p \big(x_t^{k+1} \mid x^k, y^{k+1} \big) \right\rceil dt + \eta g_t dw_t.$$

Thanks to Bayes' rule, the posterior score can be decomposed into two terms as

$$\nabla_{x_t^{k+1}} \log p(x_t^{k+1} \mid x^k) + \nabla_{x_t^{k+1}} \log p(y^{k+1} \mid x_t^{k+1}, x^k).$$

The first one is known using the pretrained denoiser whereas the second one is computed following Rozet et al, 2024.

Computing weights

Updating the weights in the case of the optimal proposal requires evaluating $p(y^{k+1}\mid x^k)$, which we approximate by

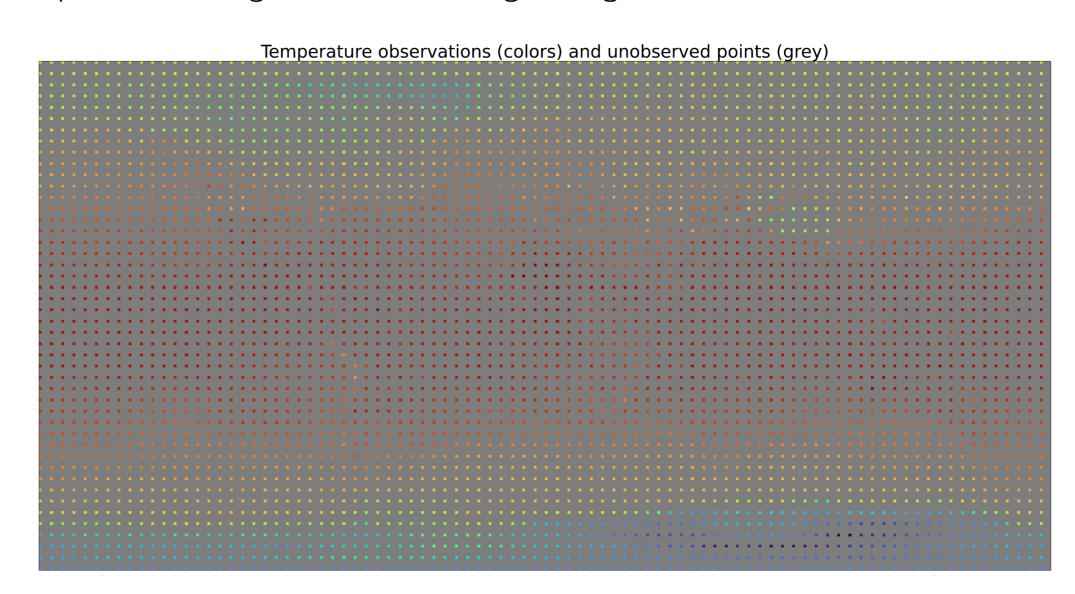
$$\int p(y^{k+1} \mid x^{k+1}) p(x^{k+1} \mid x^k) dx^{k+1} \approx p(y^{k+1} \mid \mathbb{E}[x^{k+1} \mid x^k]).$$

The conditional expectation $\mathbb{E}[x^{k+1} \mid x^k]$ is not known a priori, but can be efficiently estimated using the pretrained diffusion denoiser

$$d_{\theta}\left(x_{t=1}^{k+1} = \sigma_{1}\varepsilon, x^{k}, t = 1\right) \approx \mathbb{E}\left[x^{k+1} \mid x^{k}, \sigma_{1}\varepsilon\right] \underset{\varepsilon \sim \mathcal{N}(0, I)}{=} \mathbb{E}\left[x^{k+1} \mid x^{k}\right].$$

Experimental setup

- \bullet We use the pretrained GenCast denoiser at 1° resolution with N=256 particles.
- We only observe temperature from the surface to the top of the atmosphere on a regular latitude—longitude grid.



• Observations, initial condition and ground truth are taken from a reference ERA5 trajectory (a global atmospheric reanalysis).

Results

