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o | . Experimental setup
TL;DR Data assimilation refers to a set of algorithms used to estimate

the state of a dynamical system by combining model predictions with « We use the pretrained GenCast denoiser at 1° resolution with N = 256
observations. In this work, we show that diffusion-based emulators particles.

can be efficiently applied to this task without additional training. . We only observe temperature from the surface to the top of the atmos-

phere on a regular latitude-longitude grid.
Problem statement

Temperature observations (colors) and unobserved points (grey)

One of the goal of data assimilation, known as filtering, is to estimate
the state of a discrete time Markovian dynamical system from past and
present observations y'i*, that is to approximate the posterior distribu-
tion p(z* | yb*).
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To do so, we assume a pretrained diffusion model that defines the tran- Observations, initial condition and ground truth are taken from a refer-
sition law ence ERAS trajectory (a global atmospheric reanalysis).

Tl p(2h 1 | k),

Results
together with an observation operator H and covariance ¥, specifying
the l.lkel.lhOOd Of' the Obse rvathnS vl IDOhSPI;iIIfortemperature,geopotential,Vwind component and humidity at three different pressure levels

p(y* | =) = N(y* | H(z"),%,).
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« Particle filter approximation 1 ol o
Particle filter approximates p(z* | y**) by a discrete measure pf = £ s
SV wkzk such that the following converges weakly _ —
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They can handle strongly nonlinear dynamics but suffer from particle
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degeneracy. e
 Sampling from the optimal proposal s on o
E 72 ] 0:0010 b
Degeneracy is caused by weights variance, which is minimized by sam- &%
p“ng particles from the Optimal proposal p(karl ‘ xk:7yk+1> using the 7 I 1331367 s s RnBB R . P RPN S S I o R B S S e L Ly
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posterior score V k1 logp(zy™ | 2¥,y**1) during the diffusion process
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Ground Truth

Thanks to Bayes' rule, the posterior score can be decomposed into two
terms as

V i logp(zf™ | 2%) + V i logp(yF+t | aftt, zk).

The first one Is known using the pretrained denoiser whereas the second
one Is computed following Rozet et al, 2024.

GenCast

« Computing weights

+15 days

Updating the weights in the case of the optimal proposal requires evalu-
ating p(y*** | z¥), which we approximate by

Ground Truth

/p(yk-+1 | xk+1)p(wk+1 ‘ xk) d:l:k+1 %p(ykJrl ‘ ]E’[:L.k-F]. ‘xk])

The conditional expectation E[z**! | z*] is not known a priori, but can
be efficiently estimated using the pretrained diffusion denoiser

dg (:cfill = o,c, 2% t = 1) ~ Bz | 2, 0 €] oD E[zF 1 | z*].
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