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Abstract

Data assimilation is widely used in many disciplines such as meteorology, oceanog-
raphy, and robotics to estimate the state of a dynamical system from noisy observa-
tions. In this work, we propose a lightweight and general method to perform data
assimilation using diffusion models pre-trained for emulating dynamical systems.
Our method builds on particle filters, a class of data assimilation algorithms, and
does not require any further training. As a guiding example throughout this work,
we illustrate our methodology on GenCast, a diffusion-based model that generates
global ensemble weather forecasts.

1 Introduction

Simulating physical phenomena traditionally involves solving partial differential equations with
dedicated numerical solvers [1–3]. Recently, neural networks [4] have emerged as a compelling
alternative, achieving competitive accuracy at substantially lower computational cost [5–7]. In
particular, diffusion models [8, 9] attract growing interest due to their ability to capture high-
dimensional, multimodal distributions [10], making them promising candidates for modeling physical
systems [11–14]. In this context, the present paper contributes to ongoing efforts to adapt data
assimilation algorithms to this new diffusion-based paradigm [15–18].

More precisely, we consider the filtering problem, which aims to estimate the state of a dynamical
system at time k from past and present observations y1:k, that is, to approximate the posterior
distribution p(xk | y1:k) [19]. For this purpose, we focus on particle filters [20]. Unlike commonly
used data assimilation methods such as 4D-Var [21] or the Ensemble Kalman filter [22], particle filters
do not rely on linearizations that may not fully capture highly nonlinear processes, and thus represent
a promising alternative. Since GenCast [14], an autoregressive diffusion model for generating global
weather predictions, perfectly matches our problem setting, we use it as a case study in what follows.

2 Background

GenCast and diffusion models GenCast [14] is a global, data-driven weather forecasting system
based on diffusion models that produces 15-day ensemble forecasts at 12-hour intervals and 0.25°
resolution. To achieve this, the globe’s surface is discretized into grid points, each described by a set
of surface and atmospheric variables (e.g., temperature, humidity, wind components), and the model
autoregressively generates probable future states from current states.

More precisly, given xk the approximation of the complete atmospheric state at time k using surface
and atmospheric variables at the different points of the grid, GenCast generates samples from the

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.



distribution p(xk+1 | xk). To do so, as explained in [14, 23], we solve a stochastic differential
equation of the form

dxk+1
t =

[
ftx

k+1
t − 1 + η2

2
g2t∇xk+1

t
log p

(
xk+1
t | xk

)]
dt+ ηgtdwt (1)

where η ∈ R+ is a parameter controlling stochasticity, ft ∈ R is the drift coefficient, gt ∈ R+ is
the diffusion coefficient, wt ∈ Rn denotes a standard Wiener process and xk+1

t ∈ Rn is the sample
perturbed with noise at time t ∈ [0, 1] through a Gaussian kernel p(xk+1

t | xk+1) = N (αtx
k+1, σ2

t I).
The coefficients αt and σt are derived from ft and gt such that p(xk+1

1 | xk+1) ≈ N (0, σ2
1I) [23].

The score function ∇xk+1
t

log p
(
xk+1
t | xk

)
in Equation (1) is unknown in practice, but can be

approximated by a neural network dθ called denoiser and trained to minimize the denoising error
[24]. The optimal denoiser dθ∗ is the mean E

[
xk+1 | xk, xk+1

t

]
of p(xk+1 | xk, xk+1

t ) and is linked
to the score function through Tweedie’s formula [25, 26] (see Appendix A)
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which allows to use sθ(x
k+1
t , xk, t) = σ−2

t

[
αtdθ

(
xk+1
t , xk, t

)
− xk+1

t

]
as a score estimate in

Equation (1). Thus, drawing noise samples from p(xk+1
1 | xk) ≈ N (0, σ2

1I) and solving Equation
(1) from t = 1 to 0 with an appropriate discretization scheme [24, 27], we obtain samples from
p(xk+1 | xk).

Particle filters The aim of particle filters [20] is to approximate the filtering posterior distribution
p(xk | y1:k) by a finite discrete probability measure µk

x =
∑N

i=1 w
k
i δxk

i
such that the following

converges weakly
N∑
i=1

wk
i g(x

k
i ) −→

N→+∞

∫
g(xk)p(xk | y1:k)dxk (3)

where xk
i are the particles at time step k, wk

i the associated weights, y1:k the observations and g a
continuous and bounded function. In their standard form, particle filters alternate between a sampling
step, where particles are propagated using a proposal distribution, and a weighting step, where
weights are updated according to the proposal.

In this work, we focus on the "optimal" proposal p(xk+1 | xk, yk+1) [28], which propagates particles
from step k to k+1 conditionally on the next observation yk+1. This proposal is coined "optimal" as
it minimizes the variance of the weights, which can then be computed recursively as

wk+1
i := p(yk+1 | xk

i )× wk
i . (4)

The main drawback of particle filters is the degeneracy of the algorithm, which corresponds to the
situation where only a small subset of particles have non-negligible weights. This is due to the
dimension of the observation space: the higher this dimension, the more peaked the likelihood is, and
the more unlikely it is for the majority of particles to end up close to all the observations [29].

3 Methodology

Sampling from the optimal proposal distribution The use of the optimal proposal distribution
suggests that we are able to draw samples from p(xk+1 | xk, yk+1), which is not often the case in
practice. However, for diffusion models like GenCast, this can be done relatively easily by using the
posterior score∇xk+1

t
log p

(
xk+1
t | xk, yk+1

)
when solving Equation (1) [17, 23].

Thanks to Bayes’ rule, the posterior score ∇xk+1
t

log p
(
xk+1
t | xk, yk+1

)
can be decomposed into

two terms as [23, 30]

∇xk+1
t

log p
(
xk+1
t | xk, yk+1

)
= ∇xk+1

t
log p

(
xk+1
t | xk

)
+∇xk+1

t
log p

(
yk+1 | xk+1

t , xk
)
. (5)

As an estimate of the first term is already available via the pre-trained denoiser (see Section 2), the
remaining task is to estimate the likelihood score∇xk+1

t
log p

(
yk+1 | xk+1

t , xk
)
. To do so, assuming
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a differentiable observation operator H, a diagonal covariance matrix Σy for the observations and
a Gaussian forward process p(yk+1 | xk+1) = N (yk+1 | H(xk+1),Σy), we evaluate the likehood
score as [31]

∇xk+1
t

log p(yk+1 | xk+1
t , xk) = ∇xk+1

t
E[xk+1 | xk+1

t , xk]THT
(
Σy +HVHT

)−1
vk+1 (6)

where H is the Jacobian ofH, V = V[xk+1 | xk+1
t , xk] and vk+1 = yk+1−H(E[xk+1 | xk+1

t , xk]).
Despite its complex form, this term can be computed efficiently via automatic differentiation and
using a linear solver (see [31] or Appendix B for more details).

Computing weights Updating the weights in the case of the optimal proposal is non-trivial because
we cannot evaluate p(yk+1 | xk) directly in Equation (4). We then propose to approximate p(xk+1 |
xk) by a Dirac distribution [32] at E[xk+1 | xk] so that

p(yk+1 | xk) =

∫
p(yk+1 | xk+1)p(xk+1 | xk)dxk+1 ≈ p(yk+1 | E[xk+1 | xk]). (7)

The conditional expectation E[xk+1 | xk] is not known a priori, but can be efficiently estimated using
the pre-trained denoiser

E[xk+1 | xk] =
ε∼N (0,I)

E[xk+1 | xk, σ1ε] ≈ dθ
(
xk+1
t=1 = σ1ε, x

k, t = 1
)

(8)

These two elements enable the use of the Fully-Adapted Auxiliary Particle Filter (FA-APF), a particle
filter algorithm adapted to the optimal proposal [33] and described in Algorithm 1. We introduce
an inflation coefficient α to control the degeneracy of the weights, at the expense of a bias in the
approximation of the posterior distribution p(xk | y1:k).

Algorithm 1 Fully-Adapted Auxiliary Particle Filter (FA-APF)

Require: initial condition x0, number of particles N , thresholds Nmin,max
thr , number of steps K.

1: x0
i ← x0

2: w0
i ← 1/N

3: for k in 0, ...,K − 1 do
4: µk+1

i ← E[xk+1 | xk
i ]

5: while Neff not in [Nmin
thr , Nmax

thr ] do
6: update/initialize α

7: ŵk+1
i ←

[
p(yk+1 | µk+1

i )
]α

8: wk+1
i ← ŵk+1

i /
∑N

j=1 ŵ
k+1
j

9: Neff ← 1/
∑N

i=1(w
k+1
i )2

10: ak+1
i ∼ Cat({wk+1

i }1≤i≤N )

11: xk+1
i ← p(xk+1 | xk

ak+1
i

, yk+1)

12: return µk
x = 1

N

∑N
i=1 δxk

i
for all k ∈ [1,K]

4 Results

Experimental setup To evaluate our method, we apply Algorithm 1 with the pre-trained GenCast
denoiser at 1° resolution and N = 256 particles (Nmin

thr = 60, Nmax
thr = 70). The observations yk

and the initial condition x0 are obtained from a reference ERA5 trajectory (a global atmospheric
reanalysis produced by ECMWF [34]). We only observe temperature at the surface and at all pressure
levels on a regular latitude–longitude grid, taking one point every four degrees in both directions,
with zero-mean Gaussian noise and a standard deviation of 0.1 Kelvin. This setup corresponds to a
linear observation operatorH and a covariance matrix Σy = (0.1)2I for the observations. Following
[13], we solve Equation (1) using a temporal discretization of 40 time steps and a third-order Adam-
Bashforth scheme [35] with two correction steps [23] and two BiCGStab [36] iterations to solve the
linear system of Equation (6).
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First, to validate the correctness of the sampling from the optimal proposal (see Section 3), we
verify the consistency of the observations yk+1 with the conditional posterior predictive distribu-
tion q(ỹk+1 | xk

i , y
k+1) = Eq(xk+1|xk

i ,y
k+1)

[
p(ỹk+1 | xk+1)

]
. An example for a specific variable

(surface temperature) at an arbitrarily chosen point of the grid is shown in Figure 1.

Figure 1: Conditional posterior predictive distribution (blue curve) and corresponding observation
(red dashed line) at an arbitrarily chosen point of the grid with coordinates (lat=50, lon=5) for the
surface temperature variable. The observation is consistent with the posterior predictive distribution.

Then, we compare the skill (RMSE of the ensemble mean, lower the better) at each time step for
the FA-APF and an ensemble of N = 256 unconditional forecasts generated autoregressively using
Equation (1) without conditioning the score on observations. The skill is computed using the reference
ERA5 trajectory from which observations are extracted as ground truth. Figure 2 shows that the
skill of the filter reaches a plateau for all variables (including unobserved ones), which is well below
the skill of unconditional trajectories. Further results, including skill scores for additional variables,
ensemble spread, and trajectory visualizations are presented in Appendix C.

Figure 2: Skill comparison between the FA-APF (blue curve) and the ensemble of unconditional
GenCast trajectories (red curve) for the surface temperature (left), the surface U component of wind
(middle) and the geopotential at 500 hPA (right). The FA-APF allows to obtain a low and more or
less constant skill after 7 days of observations, even for unobserved variables.

5 Conclusion

This work introduces a training-free data assimilation method that shows promising results with
GenCast and could be deployed in operational settings with minimal effort. Since it requires no
additional training, the approach is readily applicable to other autoregressive diffusion models, and
extending its evaluation beyond GenCast is a natural next step [13, 37, 38].

Future work will investigate the role of the initial condition x0, the thresholds Nmin,max
thr , and the

number of particles N used as hyperparameters in Algorithm 1. Another research direction is to
extend this work toward a training-free approach to the more complex problem of reanalysis, which
seeks to estimate the state of a dynamical system from past, present, and future observations [19].
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A Tweedie’s formulae

Theorem A.1. Assuming that p(xk
t | xk) = N (xk

t | αtx
k, σ2

t I) and that xk+1
t is conditionally

independent of xk given xk+1, the first moment of the distribution p(xk+1
t | xk) is linked to the score

function ∇xk+1
t

log p(xk+1
t | xk) used in Equation (1) through

∇xk+1
t

log p(xk+1
t | xk) = σ−2

t

(
αtE[xk+1 | xk+1

t , xk]− xk+1
t

)
(9)

We provide proofs of this theorem for completeness, even though it is a well known result [25, 26].

Proof.

∇xk+1
t

log p(xk+1
t | xk) =

1

p(xk+1
t | xk)

∇xk+1
t

p(xk+1
t | xk)

=
1

p(xk+1
t | xk)

∫
∇xk+1

t
p(xk+1

t , xk+1 | xk)dxk+1

=
1

p(xk+1
t | xk)

∫
p(xk+1

t , xk+1 | xk)∇xk+1
t

log p(xk+1
t , xk+1 | xk)dxk+1

=

∫
p(xk+1 | xk+1

t , xk)∇xk+1
t

log p(xk+1
t | xk+1)dxk+1

=

∫
p(xk+1 | xk+1

t , xk)σ−2
t

(
αtx

k+1 − xk+1
t

)
dxk+1

= αtσ
−2
t

∫
xk+1p(xk+1 | xk+1

t , xk)dxk+1 − σ−2
t xk+1

t

∫
p(xk+1 | xk+1

t , xk)dxk+1

= αtσ
−2
t E[xk+1 | xk+1

t , xk]− σ−2
t xk+1

t

= σ−2
t

(
αtE[xk+1 | xk+1

t , xk]− xk+1
t

)

B Moment Matching Posterior Sampling

We provide technical details on how ∇xk+1
t

log p(yk+1 | xk+1
t , xk) is estimated for completeness,

even though it is already explained in [31].

In order to generate samples conditionally on yk+1, we need to evaluate∇xk+1
t

log p(yk+1 | xk+1
t , xk)

and plug it into equation (5). To do so, we can first write p(yk+1 | xk+1
t , xk) as an integral

p(yk+1 | xk+1
t , xk) =

∫
p(yk+1, xk+1 | xk+1

t , xk)dxk+1 (10)

=

∫
p(yk+1 | xk+1)p(xk+1 | xk+1

t , xk)dxk+1 (11)

Then, assuming a differentiable observation operator H, a diagonal covariance matrix Σy for the
observations, a Gaussian forward process p(yk+1 | xk+1) = N (yk+1 | H(xk+1),Σy) and a
Gaussian approximation q(xk+1 | xk+1

t , xk) = N (xk+1 | E[xk+1 | xk+1
t , xk],V[xk+1 | xk+1

t , xk])

of p(xk+1 | xk+1
t , xk), we obtain the following approximation

q(yk+1 | xk+1
t , xk) =

∫
p(yk+1 | xk+1)q(xk+1 | xk+1

t , xk)dxk+1 (12)

= N
(
yk+1 | H(E[xk+1 | xk+1

t , xk]),Σy +HV[xk+1 | xk+1
t , xk]HT

)
(13)
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where H is the Jacobian ofH. This approximation allows to estimate ∇xk+1
t

log p(yk+1 | xk+1
t , xk),

under the assumption that the derivative of V[xk+1 | xk+1
t , xk] with respect to xk+1

t is negligible, as

∇xk+1
t

log q(yk+1 | xk+1
t , xk) = ∇xk+1

t
E[xk+1 | xk+1

t , xk]THT
(
Σy +HVHT

)−1
vk+1 (14)

where vk+1 = yk+1 − H(E[xk+1 | xk+1
t , xk]) and V = V[xk+1 | xk+1

t , xk]. Although Equation
(14) gives an explicit formula to estimate ∇xk+1

t
log p(yk+1 | xk+1

t , xk), solving it in practice is

not trivial. Indeed, if the dimension of system state is large, compute and store V[xk+1 | xk+1
t , xk]

is impossible. However, as Σy + HV[xk+1 | xk+1
t , xk]HT is symmetric positive definite (SPD),

we can apply the conjugate gradient method. This method is an iterative algorithm to solve linear
systems of form Mv = b (where M is SPD), using only implicit access to M through a matrix-vector
operator. In our case, the linear system to solve is

vk+1 =
(
Σy +HV[xk+1 | xk+1

t , xk]HT
)
v (15)

= Σyv + α−1
t σ2

tH(vTH∇xk+1
t

E[xk+1 | xk+1
t , xk]︸ ︷︷ ︸

vector-Jacobian product

)T (16)

Within automatic differentiation frameworks, the vector-Jacobian product on the right-hand side can
be cheaply evaluate using the pre-trained denoiser as an estimator of E[xk+1 | xk+1

t , xk].

C Supplementary results

C.1 Skill

Figure 3: Skill for temperature, geopotential, V component of wind and specific humidity at three
different pressure levels (100, 250 and 850 hPa). The skill reaches a plateau after a certain number
of time steps for all variables (even those that are not observed), well below the one of GenCast’s
forecasts.
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C.2 Spread

Figure 4: Spread for temperature, geopotential, V component of wind and specific humidity at three
different pressure levels (100, 250 and 850 hPa). The spread is non-zero and of the same order of
magnitude as the skill, indicating that we capture a distribution rather than collapsing onto a single
mode.

C.3 Visualization of trajectories

Figure 5: Comparison of surface temperature between the reference ERA5 trajectory (first row), the
FA-APF ensemble mean (second row), and the GenCast ensemble mean (third row) after 3, 7, and 15
days.
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Figure 6: Comparison of the 10m U component of wind between the reference ERA5 trajectory (first
row), the FA-APF ensemble mean (second row), and the GenCast ensemble mean (third row) after 3,
7, and 15 days.

Figure 7: Comparison of the geopotential at 500 hPA between the reference ERA5 trajectory (first
row), the FA-APF ensemble mean (second row), and the GenCast ensemble mean (third row) after 3,
7, and 15 days.
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