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Dataset
MethaneAIR: Airborne companion

● 508 hyperspectral samples
● Spectral range: 1592-1678 nm, 1024 spectral bins
● ~300×178 spatial soundings (along-track × across-track)
● 4 classes: cloud, shadows, dark surface and background

MethaneSAT: Satellite mission

● 262 hyperspectral samples

● Spectral range: 1589-1686 nm, 1080 spectral bins
● ~2200×500 spatial soundings (along-track × across-track)
● 3 classes: cloud, shadows and background
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Semantic Segmentation: ILR and MLP

Park et al. 2023
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Semantic Segmentation: U-Net

Ronnenberg et al. 2015
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Conclusions

- Deep learning architectures achieve significantly higher performance, with 
U-Net and SCAN excelling in different aspects—U-Net in spatial coherence 
and SCAN in boundary precision.

- SCAN is better for shadows and dark surfaces. U-Net is better for clouds.
- Our ensemble approaches combine the complementary strengths of U-Net 

and SCAN, with the Combined CNN architecture achieving superior 
performance for both datasets.
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● Benchmarks in MethaneSAT data: Vision Transformer (ViT-SegFormer) and SpectralFormer
● Both use standard self-attention using different tokenization approaches:

  * Standar ViT of 16x16xspectral_dim non-overlapped patches projected to dim 768
  * Spectral patches (30 bands per patch) + class token for pixel classification

● SCAN achieves 11-13% higher accuracy than self-attention methods

Ablation Study

Method Accuracy F1-Score

SCAN 80.33±3.43% 71.53±0.75%

ViT-SegFormer 42.30+-17.4% 38.07+-12.3%

SpectralFormer 70.41+-2.94% 62.65+-1.69%

SEUNet 72.81+-8.24% 61.10+-14.2%
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