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Abstract

Accurate detection of clouds and cloud shadows is essential for reliable atmospheric
methane retrievals, a critical component of global climate monitoring efforts. This
work presents the Spectral Channel Attention Network (SCAN), a simple deep
learning architecture that addresses the fundamental challenge of spectral band
selection for hyperspectral cloud and shadow detection through channel-wise
attention mechanisms. Unlike traditional approaches that treat all spectral bands
equally, SCAN dynamically weights spectral channels based on their discriminative
power for atmospheric artifact detection. We evaluate SCAN on MethaneSAT
and MethaneAIR hyperspectral datasets, demonstrating superior performance on
MethaneSAT (71.53% F1-score vs U-Net’s 68.56%). Furthermore, we show that
SCAN’s spectral attention capabilities can be effectively combined with spatial
processing through ensemble approaches, achieving the best results with F1-scores
of 78.50% for MethaneAIR and 78.80% for MethaneSAT.

Our code is publicly available at: https://doi.org/10.7910/DVN/IKLZ0J

1 Introduction

Remote sensing of atmospheric greenhouse gases has emerged as a critical tool for climate monitoring
and emission quantification. Methane (CH,) presents a particularly urgent target for climate mitigation
efforts due to its high warming potential—over 80 times that of CO, during the first two decades
after emission [[1,2]]. This makes accurate methane monitoring essential for global climate goals.

The MethaneSAT mission [3]] and its airborne companion MethaneAIR [4} 5} 6} [7 8] represent a new
generation of hyperspectral imaging spectrometers designed for precise methane quantification. These
platforms enable detailed quantification of both point sources and area emissions at unprecedented
spectral and spatial resolution. However, accurate retrieval of methane concentrations faces a
challenge: clouds and cloud shadows introduce significant artifacts that bias atmospheric retrievals.

Traditional cloud detection methods typically treat all spectral bands equally, which may not fully
exploit the spectral heterogeneity inherent in hyperspectral data [9, 110, [11}[12} 13} 114,115, |16]. While
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Figure 1: MethaneAIR data example with classifi-
cation mask (purple: background, yellow: clouds,
green: shadows, blue: dark surfaces) and three
spectral wavelength images (top). Bottom panel
shows normalized radiance spectra from 10 ran-
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Figure 2: MethaneSAT data example with classifi-
cation mask (purple: background, yellow: clouds,
green: shadows) and three spectral band images
(top). Bottom panel shows normalized radiance
spectra from 10 randomly sampled soundings per

domly sampled soundings per class. class.

deep learning approaches like U-Net have demonstrated strong performance for spatial segmentation
(17, 18 [19} 20l 21}, 22}, 23] 241, they face challenges when applied to hyperspectral data where
different spectral regions provide varying levels of discrimination between atmospheric artifacts and
surface materials.

This paper presents the Spectral Channel Attention Network (SCAN), a simple deep learning archi-
tecture that addresses spectral band selection through channel-wise attention mechanisms. SCAN
dynamically weights spectral bands based on their discriminative features for cloud and shadow
detection. We demonstrate that SCAN’s spectral attention capabilities can be effectively combined
with U-Net’s spatial strengths through simple ensemble approaches.

We evaluate SCAN against baseline methods on MethaneSAT and MethaneAIR datasets, showing
superior performance on MethaneSAT, and competitive results on Methane AIR. Furthermore, our
simple ensemble method achieves F1-scores of 78.50+£3.08% for MethaneAIR and 78.80+1.28% for
MethaneSAT. Our contributions are threefold: (1) we show that applying channel attention directly to
spectral bands—rather than to spatial feature maps—provides significant benefits for hyperspectral
atmospheric artifact detection; (2) we provide comprehensive evaluation on real MethaneSAT and
MethaneAlR data, showing that domain-informed spectral weighting outperforms general-purpose
mechanisms; and (3) we show that simple ensemble strategies combining spectral and spatial
processing achieve the best results for both MethaneAIR and MethaneSAT by margins of 4% and 7%
of Fl-score respectively.

2 Data and Preprocessing

Our study utilizes calibrated and georeferenced Level 1B (L1B) hyperspectral data from MethaneSAT
and MethaneAIR O, spectrometers. Figure|[I]and Figure2]shows some sample images for both instru-
ments. The MethaneAIR [3, 6, [7, [8]] dataset comprises 508 hyperspectral cubes with 1024 spectral
bins covering 1592-1678 nm, spatially cropped to ~300x 178 spatial soundings. MethaneSAT data
contains 262 samples with 1080 spectral bins covering 1598-1683 nm at ~220x200 km? coverage.
Ground truth masks for each L1B sample are derived using Level2 (L2) retrieved quantities, including
CO, and CHy4 vertical column densities (VCDs) from the CHy4 spectrometer and surface pressure (P)
from the O spectrometer (see [5]] for details). Masks contain categories clouds, cloud shadows, dark
surfaces, and background for MethaneAIR, and clouds, clouds shadows, and background categories
for MethaneSAT
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Figure 3: Overview of the Spectral Channel Attention Network (SCAN) architecture for hyperspectral
cloud and shadow detection. The input hyperspectral cube is flattened and processed through a neural
network to extract spectral signatures for each pixel. These signatures are then weighted by the
spectral channel attention module, which learns to emphasize discriminative wavelengths while
suppressing less informative spectral regions. The attended features are subsequently fed into a
classification network to produce the final segmentation map distinguishing background (purple),
clouds (yellow), and cloud shadows (green).

Preprocessing includes missing value imputation, spatial standardization, and two-step normalization:
percentile clipping (1st-99th) followed by per-band standardization and batch-wise normalization
across all dimensions.

3 Spectral Channel Attention Network

The key insight driving our approach is that effective hyperspectral cloud and shadow detection
requires dynamic spectral band selection, emphasizing wavelengths that are most informative while
suppressing less discriminative regions.

Inspired from [23]], we propose Spectral Channel Attention Network (SCAN), a simple neural network
that adapts channel-wise attention mechanisms for hyperspectral band selection in cloud and shadow
detection. An overview of our proposed method is shown in[3]

Spectral Attention Module: Given input hyperspectral data X € REXHXWXC ‘where B is batch
size, H and W are spatial dimensions, and C is the number of spectral channels, we compute
channel-wise attention weights as:

o = o(WaReLU(W; ) )

where € R is the spatially averaged input, W; € R€/16%C and W, € RE*C/16 are learnable
parameters, and o is the sigmoid activation. The attended features are obtained through channel-wise
multiplication:

Xt =X O« ()

where © broadcasts attention weights across all spatial locations, producing a spectrally-weighted
representation that emphasizes discriminative bands while suppressing less informative spectral
regions.

Classification Framework: The attended features are processed through a fully-connected network
for pixel-wise classification:

P(y|X) = Softmax(farrp(Xar)) 3)



Ensemble Methods To leverage complementary strengths of spectral and spatial processing, we
develop two simple ensemble methods that combine SCAN and U-Net strenghts by concatenat-
ing predictions from frozen pre-trained models. We processes predictions through an Multilayer
Perceptron (MLP; [26]) with hidden layers [256, 128] and dropout (6 = 0.2). Also, we use a
Convolutional Neural Network (CNN; [27]) composed of 3x3 convolutional layers with padding 1
and channel dimensions [64, 128, 256], followed by 1x1 convolution for classification to preserve
spatial relationships

Relationship to Channel Attention Mechanisms: SCAN'’s spectral attention module shares con-
ceptual similarities with well established channel attention mechanisms, particularly Squeeze-and-
Excitation Networks (SE-Net) [28]], Efficient Channel Attention (ECA-Net) [29], and Convolutional
Block Attention Module (CBAM) [30]]. Similar to these methods, our approach employs global
average pooling followed by a bottleneck neural network to generate channel-wise weights. However,
we show that when applied to the spectral dimension of hyperspectral data for atmospheric artifact
detection, significant improvements are obtained over both spatial-spectral approaches and more
complex self-attention mechanisms. While similar approaches are designed for natural image classifi-
cation with spatial feature maps, we adapt this principle to weight spectral bands in hyperspectral
cubes, where channels represent physical wavelengths rather than learned feature maps.

4 Results

Baselines: We evaluate SCAN against three baseline approaches across MethaneSAT and
MethaneAIR datasets. Iterative Logistic Regression (ILR; [10]), MLP [31]]), and U-Net [[18]], as well
with our ensemble methods (Combined MLP and Combined CNN).

Training and Evaluation Strategy: All models use weighted cross-entropy loss with inverse class
frequency weights and Adam optimization with dataset-specific learning rates determined via 3-fold
cross-validation (See Appendix [A]for a details). Training includes data augmentation (random flips
and rotations), 100 epochs with batch size 32, and early stopping after 20 epochs without validation
improvement. For MethaneSAT’s variable dimensions, we implement patch-based evaluation using
overlapping 224x224 patches with weighted averaging. We report our final results over a separate
test set (composed by the 20% of the data) and the best performing model checkpoints based on
validation performance of each fold.

Quantitative Results: Table|l|presents comprehensive performance metrics. SCAN demonstrates
strong spectral attention capabilities, achieving notable success particularly on MethaneSAT data
where it outperforms U-Net with 80.33+3.43% accuracy and 71.53+£0.75% F1-score compared to U-
Net’s 78.73+3.23% accuracy and 68.56+0.36% F1-score. This superior performance on MethaneSAT
highlights SCAN’s effectiveness in leveraging spectral band selection for datasets where spectral
discrimination is critical.

MethaneAIR MethaneSAT

Model Acc (%) F1 (%) Acc (%) F1 (%)
Individual Methods

ILR 73.81+£4.05 62.07+0.86 | 71.82+4.02 64.35+3.56
MLP 82.49+£2.24 71.29+1.02 | 74.034+3.72 67.11£2.06
U-Net 88.26+0.45 76.24+1.90 | 78.73+3.23 68.56+0.36
SCAN 86.51£2.90 74.96+0.96 | 80.33+3.43 71.53+0.75
Ensemble Methods

Combined MLP 88.92+1.80 76.994+6.78 | 81.32+1.28 78.10+£1.72
Combined CNN  89.42+1.20 78.50+3.08 | 81.96+1.45 78.80+1.28

Table 1: Performance comparison across different models for both datasets.

For MethaneAIR data, while SCAN achieves 86.51£2.90% accuracy and 74.96+0.96% F1-
score—slightly below U-Net’s performance—the difference is modest (1.75% accuracy, 1.28%
F1-score). This demonstrates that SCAN’s spectral attention approach remains competitive with



spatial methods even when spatial features may be more discriminative. The Combined CNN method
achieves state-of-the-art results on both datasets: 89.42+1.20% accuracy and 78.50+3.08% F1-score
for MethaneAIR, and 81.96+1.45% accuracy and 78.80+1.28% F1-score for MethaneSAT. Detailed
model comparisons can be found in Appendix B}

Comparison with Attention Mechanisms: To further validate the suitability of our algorithm,
we compared SCAN against both channel attention and transformer-based self-attention methods
on MethaneSAT data. For channel attention, we implemented SE-UNet, augmenting U-Net with
Squeeze-and-Excitation blocks [28] applied to spatial feature maps. For self-attention, we evaluated
Vision Transformer [32] with SegFormer head [33] (applying standard self-attention to spectral-
spatial patches) and a spectral transformer approach based on SpectralFormer [34]]. Specifically, we
created patch embeddings by grouping neighboring spectral bands (30 bands per patch), projecting
them to fixed embedding size, and using a transformer with class token for pixel classification.

SCAN substantially outperforms all attention-based approaches, achieving 71.53% F1-score com-
pared to SE-UNet’s 61.10% F1-score, ViT-SegFormer’s 60.97% F1-score, and SpectralFormer’s
62.65% F1-score (See Appendix [C] for details). These results show large performance gaps of
improvement over SE-UNet, Spectralformer and ViT-SegFormer, validating that SCAN’s spectral
attention mechanisms operating directly on physical wavelengths is suitable for hyperspectral cloud
and shadow segmentation tasks.

5 Conclusion

This work presents the Spectral Channel Attention Network (SCAN), a novel architecture for hy-
perspectral cloud and shadow detection that addresses the fundamental challenge of spectral band
selection through channel-wise attention mechanisms. SCAN demonstrates superior performance
on MethaneSAT data, outperforming U-Net with 71.53% F1-score versus 68.56%, while remaining
competitive on MethaneAIR data. Notably, SCAN substantially outperforms transformer-based
self-attention methods, achieving 11.12% and 13.99% F1-score improvements over spectral and
spatial self-attention approaches respectively.

The effectiveness of SCAN can be further enhanced through simple ensemble strategies that combine
spectral attention with spatial processing. Our Combined CNN approach achieves state-of-the-art
performance with F1-scores of 78.50% for MethaneAIR and 78.80% for MethaneSAT, representing
significant improvements over baseline methods. These advances in atmospheric artifact detection
directly enhance satellite-based methane monitoring reliability, supporting critical climate monitoring
efforts. SCAN’s focused approach to spectral band weighting proves that specialized attention
mechanisms are more effective than general methods that process bands equally for hyperspectral
segmentation tasks, opening new directions for hyperspectral remote sensing applications.
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A Appendix A: Hyperparameter Selection

We performed hyperparameter optimization using 3-fold cross-validation on 10% of the training data.
Learning rates were selected from {1 x 1074, 5 x 107%,1 x 1073, 5 x 1072, 1 x 10~2}, using 3-fold
cross-validation on the training set. The optimal rates are shown in Table 2}

Model MethaneAIR MethaneSAT
ILR 1x102 1x102
MLP 1x 5073 1x 1072
SCAN 1x10°3 1x10°3
U-Net 1x1073 5x 1073
Combined MLP 1x10°2 5x 1074
Combined CNN 1x 1072 5x 1074

Table 2: Best learning rates for each data source and model architecture.

All models used Adam optimizer 5; = 0.9 and 52 = 0.999 with class weighting based on inverse
class frequencies. Key architectural parameters: MLP hidden dimensions [20,20], SCAN with
channel reduction of 16 and MLP classifier of dimensions [20, 20] , Combined MLP dimensions
[256,128] with 0.2 dropout, Combined CNN channels [64,32,16] with 0.2 dropout.

B Appendix B: Detailed Baseline Results

The visual comparison shown in Figure 4] and [5]reveals distinct model characteristics across both
datasets. ILR and MLP models produce noisy, fragmented predictions due to pixel-wise processing,
while SCAN demonstrates improved boundary detection through spectral attention mechanisms.
U-Net reduced dark surface overprediction, though its lower quantitative metrics reflect its tendency
to boundary over-smoothing. The Combined CNN achieves optimal balance, preserving structural
detail while maintaining spatial coherence across both MethaneAIR and MethaneSAT scenes.

Confusion matrices in Figure[6]for MethaneAIR and Figure 7] for MethaneSAT reveal dataset-specific
classification challenges. MethaneAIR shows progression from ILR’s background-dark surface
confusion (18.09% misclassification) to Combined CNN’s balanced performance across all classes
(91.50% shadow accuracy). MethaneSAT presents greater cloud-shadow spectral similarity, with
SCAN outperforming U-Net in shadow detection (81.62% vs 71.11%), highlighting spectral attention
benefits for this dataset’s characteristics.

For MethaneAIR data, the U-Net emerged as the second-best performing model due to its capacity
for detecting dark surfaces and producing spatially coherent predictions with reduced false positives.
The model achieved 88.26+0.45% accuracy while demonstrating superior background detection
(86.71%) and notably reducing dark surface misclassifications. In contrast, SCAN showed strong
cloud detection capabilities (91.20% class-specific accuracy) but struggled with shadow-dark surface
discrimination. For MethaneSAT data, SCAN outperformed U-Net (accuracy: 80.33+3.43% vs
78.73+3.23%), suggesting that spectral attention mechanisms are particularly valuable for Methane-
SAT’s unique spectral characteristics, especially in shadow detection where SCAN achieved 81.62%
accuracy compared to U-Net’s 71.11%.

The confusion matrices revealed distinct classification challenges between datasets. Methane AIR
models showed primary confusion between background and dark surface classes, with the Com-
bined CNN reducing this to acceptable levels while achieving excellent cloud (96.26%) and shadow
(91.50%) detection. MethaneSAT presented greater spectral similarity between cloud and shadow
classes, with even the best-performing Combined CNN showing 12.59% cloud-to-shadow misclassi-
fication. However, the Combined CNN maintained robust overall performance with class-specific
accuracies of 85.02% for background, 79.83% for clouds, and 83.15% for shadows. The optimal



Data, Mask, and Prediction Comparison Across Different Models.
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Figure 4: Prediction comparison across all evaluated models for MethaneAIR test scenes from first
cross-validation fold.

model selection should be guided by specific operational requirements, as U-Net’s tendency toward
conservative boundary delineation may be advantageous for applications prioritizing false positive
reduction over precise edge detection, particularly for downstream atmospheric retrieval processes.



Multi-Model Comparison: Data, Ground Truth, and Predictions
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Figure 5: Prediction comparison across all evaluated models for MethaneSAT test scenes from first
cross-validation fold. Scenes transposed for visualization.
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Figure 6: Confusion matrices for all evaluated models on MethaneAIR test data from first cross-
validation fold.
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Figure 7: Confusion matrices for all evaluated models on MethaneSAT test data from first cross-
validation fold.

C Appendix C: Attention Mechanism Results

To evaluate the effectiveness of spectral channel attention against alternative attention mechanisms,
we conducted experiments with three baseline approaches on MethaneSAT data: SE-UNet (spatial
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channel attention), ViT-SegFormer (spatial self-attention), and SpectralFormer (spectral self-attention).
This appendix provides detailed quantitative and qualitative results for these comparisons.

Table [3] presents the quantitative performance of all attention-based methods. SE-UNet applies
Squeeze-and-Excitation blocks to U-Net’s spatial feature maps, achieving 72.814-8.24% accuracy
but exhibiting high variance (+14.2% F1-score). The transformer-based approaches show lower but
more stable performance, with ViT-SegFormer achieving 68.84+2.15% accuracy and SpectralFormer
achieving 70.41£2.94% accuracy. SCAN substantially outperforms all methods with 80.33+3.43%
accuracy and 71.53£0.75% F1-score, while maintaining the lowest variance across all metrics.

Model Acc (%) F1 (%)

SE-UNet 72.81+£8.24 61.10+14.2
ViT-SegFormer 68.84+2.15 60.97£3.42
SpectralFormer 70.41+£2.94  62.65£1.69
SCAN 80.33+3.43 71.53+0.75

Table 3: Performance comparison of attention mechanisms on MethaneSAT test data.

Figure [§] shows representative MethaneSAT test scenes comparing attention-based baseline methods.
SE-UNet produces the most spatially coherent predictions among other attention methods, with
well-defined cloud and shadow boundaries, but exhibits visible cloud-shadow confusion (visible
in rows 1 and 3). ViT-SegFormer exhibits severe limitations, producing highly fragmented and
noisy predictions across all test scenes. Notable failures include nearly complete misclassification
in row 1 (predicting mostly shadows where clouds dominate), and general difficulties to capture
spatial structures. SpectralFormer, produces noisy predictions with limited spatial coherence, failing
to capture cloud and shadows. The pervasive noise indicates that spectral self-attention alone,

without spatial regularization, leads to unstable pixel-wise predictions that struggles distinguishing
atmospheric features from noise.
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Multi-Model Comparison: Data, Ground Truth, and Predictions
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Figure 8: Prediction comparison of attention-based methods on MethaneSAT test scenes. From left
to right: Input image, Ground Truth, SE-UNet, ViT-SegFormer, and SpectralFormer.
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