Neural Network-enabled Domain-consistent
Robust Optimisation for Global CO, Reduction
Potential of Gas Power Plants

Problem Statement

« Energy sector is the largest contributor of CO, emissions [1]

* Neural networks are universal function approximators but black-box [2]

 Embedding Al models into standard optimisation framework provides
domain-inconsistent solutions, not implementable in industry [3]

« Data-driven domain quantification and later its representation is difficult

Objectives

* Develop domain-constrained and data-driven robust optimisation
framework with Mahalanobis trust regions

« Train multi-level surrogates for combined cycle gas power plant

» Verify the optimal solutions against the power plant data [4]

« Estimate annual CO, reduction potential from global gas power plants

Methods

» Feed-forward artificial neural network (ANN) models are trained with L,
regularization and ADAM solver
« Two-stage robust optimisation framework is established:
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Here, thermal efficiency (TE) and turbine heat rate (THR) are the plant-
level performance metrics which are optimised against Powerg,tpoint

« The robustness of the optimal solution (x*) is evaluated on variance
(V(x*)) produced in multi-objective function due to input perturbation
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« The efficiency improvement (EI) in TE using historical operational data of
combined cycle gas power plant (CCGPP) is estimated:
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Methods - Continued

« Annual CO, reduction potential from global fleet of gas power plants is
calculated as:

Annual CO, Reduction = Capacity X Capacity factor X

(9)

. : L 1
Operating time X Emission factor X (1 — ﬁ)
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Results

« Three-layer ANN models are trained for performance variables of gas
turbine-1 (GT-1), gas turbine-2 (GT-2), steam turbine (ST) and CCGPP

Performance Data GT-1 GT-2 ST CCGPP
Variables R2 RMSE R2 RMSE R? RMSE R? RMSE
Power (MW) Train 0.99 085 099 0.83 099 125 099 7.94
Test 0.99 0.93 099 081 099 1.25 099 7.92

Train 0.88 203 0.89 163 095 23 0.89 49

THR (kJ/kWh) Test 0.84 221 086 181 095 24 085 55
TE (%) Train 0.97 0.38 0.97 0.35 — — 094 0.3
Test 0.96 04 0.96 0.37 — — 0.94 0.29

« TE and THR are analysed at power generation of 950 MW and 1050 MW
from CCGPP
« The optimal solutions are compared, estimated with and without
Mahalanobis constraint
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Results - Continued

0.76 percentage point (pp) EI is realised from plant-level operation
optimisation of CCGPP

0.76 £ 0.5 pp EI is extended to global fleet of gas power plants [3]
EI collectively could avoid ~ 26 million tonnes (Mt) of annual CO,
discharge
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Conclusions and Future Work

« Mahalanobis distance-based constraint embeds the data-driven domain

up to human-defined tolerance level into optimisation problem

« Domain-constrained optimisation achieves 0.76% verified efficiency gain

with robustness under operational noise level (1%)

« Annual CO, reduction potential of 26.0 Mt from global fleet of gas power

plants
Al-led real-time optimisation of gas power plants is a near-term, scalable
decarbonization pathway

« Estimating the Al enabled emission reduction potential from chemical,

industrial and transportation sectors in the future
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