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Abstract

We introduce a neural network-driven robust optimisation framework that integrates
data-driven domain as a constraint into the nonlinear programming technique,
addressing the overlooked issue of domain-inconsistent solutions arising from
the interaction of parametrised neural network models with optimisation solvers.
Applied to a 1180 MW capacity combined cycle gas power plant, our framework
delivers domain-consistent robust optimal solutions that achieve a verified 0.76
percentage point mean improvement in energy efficiency. For the first time, scaling
this efficiency gain to the global fleet of gas power plants, we estimate an annual
26 Mt reduction potential in CO2 (with 10.6 Mt in Asia, 9.0 Mt in the Americas,
and 4.5 Mt in Europe). These results underscore the synergetic role of machine
learning in delivering near-term, scalable decarbonisation pathways for global
climate action.

1 Introduction

The International Energy Agency (IEA) identifies efficiency as the “first fuel” of the clean energy
transition, capable of delivering over one-third of CO2 reductions needed by 2030 under its Net Zero
Emissions Scenario, while reducing global gas demand by around 50% [1]. Enhancing the energy
efficiency of gas-fired power plants constitutes a cost-effective and expeditious approach to advancing
both climate objectives and energy security within the framework of net-zero transitions [2, 3]. The
energy efficiency gains not only cut emissions but also enhance resilience to fuel supply disruptions,
complementing longer-term solutions such as hydrogen co-firing and carbon capture, utilisation
and storage [4, 5]. In this regard, data-driven modelling and optimisation techniques hold a central
role for robust optimisation of gas plants’ operation that can yield potential energy efficiency gains
[6]. However, pure data-centric optimisation analytics can be domain-inconsistent with the plant’s
operation [7, 8], which may undermine the potential energy efficiency gains and, in turn, lower CO2
discharge from gas power plants.

This paper presents the following contributions: (i) we formulate a domain-consistent optimisation
model that constrains optimal solutions to a data-derived Mahalanobis trust region over operating
variables, (ii) we train multi-level artificial neural network (ANN) surrogates (turbines and plant level)
and embed them in a nonlinear robust optimisation framework along with process constraints, (iii) we
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verify the optimal solutions against the plant data from a 1180 MW combined cycle gas power plant
(CCGPP) unit and achieve the energy efficiency gain, and (iv) we scale up the gain in plant-level
energy efficiency to the global fleet of gas power plants and estimate their annual CO2 reduction
potential, identifying a new decision-led pathway for emissions reduction to support climate action.

1.1 Prior work

A significant proportion of literature on the application of ML for CCGPP is based on this open-source
data set [9], frequently used to benchmark the performance of proposed ML algorithms [10, 11].
However, the data set omits key operating variables and performance parameters (e.g., thermal
efficiency and turbine heat rate), limiting the implementation of ML-driven findings in industrial
settings. Recently, some studies have deployed real operational data of gas power plants to carry out
artificial neural network (ANN)-based optimisation for the performance parameters by deterministic
and evolutionary techniques [12, 13, 14]. Yet, the literature studies have not examined the critical
interaction of parametrised ANN model with the greedy optimisation solvers, which can produce
domain-inconsistent and operationally infeasible solutions. This overlooked issue is the major barrier
to adopting ML in the safety-critical industrial environment, where uptake remains historically slow.
Beyond methodological advancement, the broader question of ML-enabled CO2 mitigation from the
global fleet of gas power plants remains unexplored, despite its importance for navigating new routes
to achieve net-zero and to contribute to climate action.

2 Method

ANN can approximate nonlinear function space with reasonable accuracy and memory requirement
[15, 16], and is used for power systems’ applications [11, 17]. In this paper, ANN models are trained
to predict performance parameters at the subsystems (Gas Turbine (GT)-1,-2, and Steam Turbine
(ST)), and plant-level (CCGPP) operation of a 1180 MW capacity CCGPP. The operating variables at
all operating levels of CCGPP are selected based on literature review [18, 19] and feedback from the
performance engineers. A brief description of the operation of CCGPP is provided in Section A. A
data set comprising 577 observations, averaged over 15 minutes each, is collected from the CCGPP. It
covers a wide operating range of operating variables and performance parameters (thermal efficiency
(TE-%), turbine heat rate (THR-kJ/kWh) and generated power (Power-MW)), and characterises the
operation of CCGPP. The statistics of the data set are provided in Table A1 and Table A2.

Neural network-driven domain-constrained robust optimisation framework consists of two stages.
In the first stage, the trained ANN models are embedded in the optimisation problem to optimise
performance parameters, i.e., maximise TE and minimise THR at the set value of Power for CCGPP.
The plant-level optimisation problem formulated by nonlinear programming is given as:

Objective function : min
x

f(x) = −fTE(x) + fTHR(x)

s.t. h(x) = 0,

(fPower(x)− PowerSet Point)
2 < ϵ,

fPower(x)−
3∑

i=1

xi < ∆, (x− µ)⊤Σ−1(x− µ) < τ2,

x ∈ X ⊆ Rm, x = {x1, x2, . . . , xm}, xL ≤ x ≤ xU

(1)

here, h(x) is an equality constraint, and represents a trained ANN models. Equal weight is applied
to the optimisation terms in the objective function, as they are treated equally for the performance
evaluation of thermal power plants [20]. An inequality constraint minimises the squared deviation
between the set value of Power (Power Set Point) and the model-based simulated Power (fPower(x)) up
to ϵ. xi is a set of variables (Power-MW) from subsystem level (GT-1,GT-2, ST) and the deviation of
their summation from fPower(x) is kept below ∆-auxiliary power consumption in CCGPP. Whereas,
the Mahalanobis distance-based constraint (x− µ)⊤Σ−1(x− µ) ≤ τ2) introduces the data-driven
domain knowledge of the plant’s operation into the optimisation problem for estimating domain-
consistent optimal solutions. x is a set of operating variables and has lower (xL) and upper (xU )
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bounds. With the top-down optimisation approach, the operating conditions of the operating variables
at the subsystem level are simulated (see Section C for more details).

In the second stage, the robustness of the estimated solutions at all operating levels of CCGPP is
examined by the input perturbation technique [21]. Gaussian noise on the noise level from 1% to 5%
of the ranges of operating variables is generated and added with the optimal solutions to construct
10,000 simulated experiments [21]. The variance threshold is kept below 0.01 to account for robust
optimal solutions [22] (refer to Section D for more details). Later, the optimal solution(s) are verified
on the operation of CCGPP, and the potential gain in energy efficiency is converted into an annual
reduction in CO2 emissions from the CCGPP (refer to Section E). Later, ML-led cumulative CO2
reduction potential from the global fleet of gas power plants is estimated.

3 Results

3.1 Plant-level energy efficiency gain

ANN models corresponding to the operating levels of subsystems (GT-1, GT-2, ST) and plant-level
(CCGPP) are trained with a coefficient of determination (R2) equal to or greater than 0.85 in the
test data set. Details about the predictive performance of the models are provided in Table B1. The
plant-level optimisation problem is solved on two set-point values of Power, i.e., (Power Set Point =
950MW, 1090MW ) by Interior Point solver in Pyomo [23]. The two operating levels of Power are
chosen because (i) gas power plants operate nearly at full design capacity [24], and (ii) to demonstrate
the efficacy of the ANN-based optimisation framework to adapt to variable power demand.

The optimisation problem 1 is solved with respect to different initial guesses and without embedding
Mahalanobis distance-based constraint to observe the quality of the optimal solution in terms of
optimising the performance parameters and domain consistency. It is noted that the optimisation
solver estimates the optimal values of TE and THR (refer to Figure 1(a)(i)) that are beyond their
nominal operating ranges, as mentioned in Table A2. Domain-inconsistent optimum solution is
estimated (shown in Figure 1(a)(ii) for set value of Power of 950 MW (red colour)) as it is mapped
significantly outside the operating envelope of the two correlated features (GFFR & CDP of GT-
1). Feasible and domain-consistent optimal solutions are obtained after solving the Mahalanobis
distance-based constrained optimisation problem 1 (refer to Figure 1(b)(i)-(iii). Out of the feasible
solutions, the optimal solution is selected that exhibits the lowest variance, even below the threshold
(0.01), in the plant-level performance parameters (refer to Section D to get specific details).

Figure 1: Multi-level optimisation of CCGPP. Solver convergence for optimisation problem solved
(a)(i) without and (b)(i) with Mahalanobis constraint for Power Set Point of 950 MW (red) and 1090
MW (blue). (a)(ii-iii) and (b)(ii-iii) Mapping the optimal solutions, and (c) comparing the optimal
solutions with the actual data of power plant.

The effectiveness of the estimated solution is verified on the actual data of CCGPP. TE & THR at
the plant level for the power value of 950 MW and 1090 MW are achieved with the mean absolute
percentage error of 0.1% & 0.04%, and 0.04% & 0.5%, respectively. Comparing the improvement in
TE with the plant’s operation corresponding to power generation of 950 MW and 1090 MW (refer to
Figure 1(d)), we identify a mean improvement in TE of 0.76 percentage point (pp), achieved through
ML-led synchronised operation optimisation of CCGPP.
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3.2 Emissions reduction from global fleet of CCGPP

Building on ANN-led estimated efficiency improvement potential of the CCGPP unit, we consider
0.76 ± 0.5 pp (minimum and maximum energy efficiency gain possible in the global fleet of CCGPP
[25] due to heterogeneous factors, including combustion technology, fuel quality, capacity of plant
etc.,) and extend this range to estimate associated global reduction in carbon emissions. The results
suggest that targeted efficiency upgrades could collectively avoid around 26 Mt CO2 emissions
annually (Figure 2), a reduction comparable to taking several million cars off the road each year. The
largest national potential lies in the United States (7.1 Mt), where a combination of high installed
capacity and relatively mature infrastructure could deliver over a quarter of the global total. Significant
opportunities also exist in China (1.7 Mt), Russia (1.5 Mt), and Japan (1.1 Mt), where efficiency
gains could meaningfully offset growing electricity demand and reduce reliance on imported fuels.

When viewed at a regional scale, Asia emerges as the leading contributor to potential savings (10.6
Mt), driven primarily by Eastern Asia (3.7 Mt), where China’s extensive gas power fleet dominates
the picture. The Americas follow closely (9.0 Mt), with most of the reductions concentrated in North
America (7.5 Mt) due to its large, high-utilisation plants. Europe also offers notable opportunities
(4.5 Mt), particularly in Eastern Europe (1.8 Mt) where older generation units still prevail. In contrast,
Africa’s contribution is more modest (1.5 Mt), reflecting both its smaller installed base and lower
operating hours. These patterns highlight that efficiency improvements in gas-fired generation not
only cut emissions in the near term but also enhance fuel efficiency, reduce operating costs, and
strengthen energy resilience, providing a practical bridge between today’s power systems and the
deeper decarbonisation required for net-zero pathways.

Figure 2: Global CO2 reduction potential from gas power plants.

Conclusion

This research addresses the domain-inconsistency issue arising from the interaction of parametrised
neural network models with goal-oriented optimisation solvers to estimate robust optimal solutions.
We demonstrate the adaptability of the developed neural network-driven domain-consistent robust
optimisation framework for operation optimisation of a 1180 MW capacity CCGPP and achieve a
0.76 percentage point mean efficiency gain for the power plant’s operation. Scaling the efficiency
gain to the global fleet of gas power plants, an annual reduction potential of 26 Mt CO2 is estimated,
with the largest potential in Asia (10.6 Mt), the Americas (9.0 Mt) and Europe (4.5 Mt).

These findings suggest that machine learning–enabled robust optimisation not only enhances the
resilience of plant performance but also offers scalable short-term decarbonisation pathway, comple-
menting long-term solutions and expanding the role of artificial intelligence in climate action.
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Appendix

A Brief description of combined cycle gas power plant

The 1180 MW capacity combined cycle gas power plant (CCGPP) comprises two gas turbines (395
MW capacity each) and the exhaust gases from the gas turbines operate a steam turbine system
(388 MW capacity). Turbine heat rate (THR - kJ/kWh), thermal efficiency (TE - %), and Power
(Power - MW) are measured at the output of gas turbines while Power and THR are measured at the
output of steam turbine system. At the plant-level, TE, THR and Power are measured to evaluate the
performance of CCGPP.

At the gas turbine (GT) level, the selected operating features are as follows: temperature of air at the
discharge of compressor (CDT-◦F), pressure of air at the discharge of compressor (CDP-Psi), Flow
Rate of Gas (GFFR-lb/s), Performance Heater Gas Outlet Temperature (PHGOT-◦F), Temperature of
gas at entrance of combustion chamber (FGT-◦F), Atmospheric Temperature (AT-◦C), Atmospheric
Pressure (AP-hPa) and Atmospheric Humidity (AH-%). The same operating features are used for
two gas turbines. Whereas, the operating features selected for steam turbine system are as follows:
Flue Gas Temperature at the inlet of Heat Recovery Steam Generator (FGT_HRSG-◦C), Feed Water
Temperature at Intermediate Pressure (IP) Economizer (FWT-◦C), Reheat Steam Pressure at IP inlet
(RHP-MPa), Reheat Steam Temperature at IP inlet (RST-◦C), Reheat Steam Flow Rate at IP inlet
(RSF-t/h), Steam Flow Rate at the inlet of Low Pressure (LP) Turbine (LPST-t/h), Steam Pressure
at the inlet of LP Turbine (LPSP-MPa), Steam Temperature at the inlet of LP Turbine (LPST-◦C),
and Condenser Vacuum (CV-kPa). The outputs of gas turbines (TE, THR and Power) and steam
turbine (THR and Power) are deployed to model the plan-level performance parameters (TE, THR
and Power) of CCGPP.

After the selection of the operating variables and the corresponding performance parameters at the
sub-system level (GT-1, GT-2, ST) and plant-level (CCGPP), a dataset associated with the operating
features is collected from the power plant. The data set covers a wide operating range of the power
plant’s operation. The descriptive statistics of the collected data are provided in Table A2.

B Training of ANN models for CCGPP

ANN models are trained under hyperparameter tuning. We train shallow three-layered ANN models
since they can model any nonlinear function space as long as reasonable number of neurons are
embedded in the hidden layer [26]. Sigmoid Linear Unit (SiLU) based activation function is im-
plemented on the hidden layer of ANN for its smooth and non-monotonicity properties compared
with the rectified linear unit [27, 28]. Learning rate, neurons number in the hidden layer, and L1

regularisation parameter (λ1) are optimised by Tree-structured Parzen Estimator solver that adopts
Bayesian optimisation approach [29]. Later, the optimal values of hyperparameters are embedded
in the architecture of ANN and the parameters of ANN models are tuned by Adaptive Moment
Estimation [30]. The data partition is made on the ratio of 0.2 and 0.8 for testing and training datasets,
respectively, for the evaluation of model’s predictions. The predictive performance of the trained
ANN models on the training and testing datasets is evaluated by co-efficient of determination (R2)
and root mean square error (RMSE). The two metrics are commonly used to evaluate the modelling
performance of ML models [31, 32]. The predictive performance of the trained models is provided in
Table B1.

C Optimisation problem for subsystems of CCGPP

A nonlinear programming framework is implemented to simulate the optimal values of operating
variables for the performance parameters related to the operating level of subsystems (GT-1, GT-2,
ST) of CCGPP. The outputs of subsystems are deployed to predict the plant-level performance
parameters. Under the top-down approach, we first optimise TE and THR (plant-level performance
parameters of CCGPP) on the set values of Power, and estimate the optimal input conditions which
are actually the outputs of subsystems (GT-1, GT-2 and ST). In order to achieve the optimal output
values of the performance parameters of subsystems, we formulate an optimisation problem which is
defined similar to Equation 1. However, the objective function along with process constraints for GT
and ST is defined differently and is written as follows:
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Table A1: Nomenclature

Abbreviation
AH Atmospheric Humidity (%)
ANN Artificial Neural Network
AP Atmospheric Pressure (hPa)
AT Atmospheric Temperature (°C)
CCGPP Combined Cycle Gas Power Plant
CDP Pressure of air at the discharge of compressor (Psi)
CDT Temperature of air at the discharge of compressor (°F)
CV Condenser Vacuum (kPa)
FGT Temperature of gas at entrance of combustion chamber (°F)
FGT_HRSG Flue Gas Temperature at the inlet of HRSG
FWT Feed Water Temperature at IP Economizer (°C)
GFFR Flow Rate of Gas (lb/s)
HP High Pressure
HRSG Heat Recovery Steam Generator
IP Intermediate Pressure
LP Low Pressure
LPSF Steam Flow Rate at the inlet of LP Turbine (t/h)
LPSP Steam Pressure at the inlet of LP Turbine (MPa)
LPST Steam Temperature at the inlet of LP Turbine (°C)
ML Machine Learning
MSFR Main Steam Flow Rate at HP Inlet (t/h)
MSP Main Steam Pressure at HP Inlet (MPa)
MST Main Steam Temperature (°C)
PHGOT Performance Heater Gas Outlet Temperature (°F)
Power Power (MW)
PP Percentage Point
RSF Reheat Steam Flow Rate at IP Inlet (t/h)
RSP Reheat Steam Pressure at IP Inlet (MPa)
RST Reheat Steam Temperature at IP Inlet (°C)
TE Thermal Efficiency (%)
THR Heat Rate (kJ/kWh)

For GT: min
x

f(x) = (fPower(x)− PowerSet Point)
2

s.t. h(x) = 0,

(fTE(x)− TESet Point)
2 < ϵ,

(fTHR(x)− THRSet Point)
2 < ϵ,

(x− µ)⊤Σ−1(x− µ) < τ2,

x = {x1, x2, . . . , xp}, x ∈ X ⊆ Rp, xL ≤ x ≤ xU

(C1)

For ST: min
x

f(x) = (fPower(x)− PowerSet Point)
2 + (fTHR(x)− THRSet Point)

2

s.t. h(x) = 0,

(x− µ)⊤Σ−1(x− µ) < τ2,

x = {x1, x2, . . . , xq}, x ∈ X ⊆ Rq, xL ≤ x ≤ xU

(C2)

here, µ is mean vector while Σ is the covariance matrix computed on data associated with x. τ
controls the feasible space around the mean-centroid of the joint-distribution of x where optimisation
solver searches for optimal solution. The number of elements in x are defined as per the operating
variables related with operating-level of power plant (GT-1, GT-2, ST, CCGPP).

The defined optimisation problems for GT-1, GT-2 and ST are solved for different values of ϵ and
τ such that the optimal values of their performance parameters are closely matched with those of
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Table A2: Summary statistics for variables across different systems with units

System Variable Unit Minimum Mean Maximum Standard Deviation

GT-1

CDT °F 813 861 926 34.3
CDP Psi 186 248 312 36.9
GFFR lb/s 29 39 50 5.7
PHGOT °F 400 411 425 2.5
FGT °F 484 513 535 15.0
AT °C 20 26 34 3.7
AP hPa 983 988 992 2.0
AH % 34 66 98 14.2

Power MW 186 297 396 59.4
THR kJ/kWh 8377 9267 11022 580.0
TE % 32.7 39.0 43.0 2.4

GT-2

CDT °F 829 872 927 34.4
CDP Psi 202 246 311 37.2
GFFR lb/s 31 39 48 5.5
PHGOT °F 404 411 418 1.5
FGT °F 494 523 541 11.5
AT °C 20 26 34 3.7
AP hPa 983 988 992 2.0
AH % 34 66 98 14.2

Power MW 216 292 390 56.6
THR kJ/kWh 8471 9308 10311 506.0
TE % 35.0 38.8 42.5 2.1

ST

FGT °C 629 659 673 15.9
FWT °C 153 159 167 4.4
MSP MPa 11.5 13.1 15.2 1.2
MSFR t/h 483 623 731 64.5
MST °C 579 582 583 0.7
RSP MPa 2.56 2.88 3.26 0.2
RST °C 580 582 584 0.7
RSF t/h 529 676 797 71.3
LPSF t/h 596 758 906 85.7
LPSP MPa 0.37 0.45 0.55 0.1
LPST °C 314 319 324 2.5
CV kPa -92.3 -91.0 -89.0 0.9

Power MW 260 297 344 25.0
THR kJ/kWh 2642 3048 3375 110.5

CCGPP
Power MW 680 859 1094 130.9
THR kJ/kWh 6052 6363 6723 149.9
TE % 53.6 56.6 59.5 1.3

plant-level optimal input conditions (same as performance parameters of subsystems). This allows the
operation of the subsystems at the optimal process conditions such that their performance parameters
closely predict the performance parameters at the plant-level operation of CCGPP. Mahalanobis
constraint guides the optimisation solver for estimating the domain-consistent solutions and enhances
their implementability in the operation of the power plant.

D Robustness evaluation of optimal solutions

The following equations are used to evaluate the robustness of the optimal solutions (x∗) obtained for
sub-system and plant-level performance parameters.
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Table B1: Performance metrics of trained ANN models for multi-level operation of gas power plant.

GT-1 GT-2 ST CCGPP

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Power (MW) Train 0.99 0.85 0.99 0.83 0.99 1.25 0.99 7.94
Test 0.99 0.93 0.99 0.81 0.99 1.25 0.99 7.92

THR (kJ/kWh) Train 0.88 203.31 0.89 163.46 0.95 23.43 0.89 49.27
Test 0.84 221.70 0.86 181.03 0.95 24.44 0.85 54.46

TE (%) Train 0.97 0.38 0.97 0.35 – – 0.94 0.30
Test 0.96 0.40 0.96 0.37 – – 0.94 0.29

F (x∗) =

∑H
k=1 f(x

∗ + δk)

H
(D1)

V (x∗) =
||F (x∗)− f(x∗)||

||f(x∗)||
< ϵ (D2)

here, δ refers to the noise observations produced on the noise level (varied from 1% to 5% of the
operating ranges of the variables). k indicates the number of noise observations and are set to 10000,
i.e., H . The generated Gaussian noise observations (δk) are added with the optimal solution (x∗) to
investigate the variation in the function space of the performance parameter driven by perturbing x∗

[22]. The vicinity of x∗ is comprehensively explored through the constructed experiments (x∗ + δk)
and the mean response of the function (F (x∗)) is computed. Later, variance produced due to
constructed experiments (V (x∗)) is computed. The estimated solution can be regarded as robust if
V (x∗) is less than ε.

The optimal solution estimated for Power of 950 MW remains robust for 1% noise level of operating
ranges for all operating levels of CCGPP. Whereas, the optimal solution absorbs 5% noise level for
the set value of power of 1090 and still remains robust for the operation of CCGPP. For Power of 950
MW and 1090 MW, the variance computed in the plant-level performance parameters, i.e., Power,
TE and THR is as follows: 0.0002, 0.0002, 0.0001 and 0.0009, 0.0062, 0.0004 respectively.

E Emission reduction

The gain in energy efficiency is converted into annual reduction in CO2 emissions from the power
plant. Capacity factor, power plant’s generation capacity, and operating hours of the power plant are
important factors in determining the emissions discharge. The annual reduction in CO2 emissions
from the global gas power plants (refer to Equation E1) is calculated as follows:

CO2 reduction = Capacity×Capacity factor×Hours×Emission factor×
(
1− 1

1 + efficiency improvement

)
(E1)

The capacity factor and emission factor are taken as 0.5 and 0.4 ton of CO2 per MWh, respectively.
In Figure E1, the engine technologies are categorised into the following types:

• Internal Combustion: Power plants using reciprocating internal combustion engines fueled
by natural gas or other fuels. They are typically small to medium scale, flexible, and suitable
for distributed generation or peaking applications.

• Gas Turbine: Plants where natural gas is combusted to drive a gas turbine connected to a
generator. They offer fast start-up and are widely used for peak-load or backup power.

• Steam Turbine (ST): Gas is burned to produce steam, which then drives a steam turbine.
These plants are usually less efficient on their own compared to combined-cycle systems.
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Figure E1: Distribution of global gas power plants.

• Combined Cycle (CC): A configuration that combines a gas turbine with a steam turbine,
using the waste heat from the gas turbine to produce steam. This significantly improves
overall efficiency, making CC plants the dominant form of modern gas power generation.

• ICCC (Internal Combustion Combined Cycle): Internal combustion engines are integrated
with a combined cycle system to enhance efficiency and reduce emissions.

• ISCC (Integrated Solar Combined Cycle): A hybrid design that integrates solar thermal
energy with a conventional combined cycle gas turbine plant, improving fuel efficiency and
reducing CO2 emissions.

• AFC (Allam–Fetvedt Cycle): A novel natural gas power cycle that uses supercritical CO2
as the working fluid, enabling near-zero emissions with inherent carbon capture and high
efficiency.
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