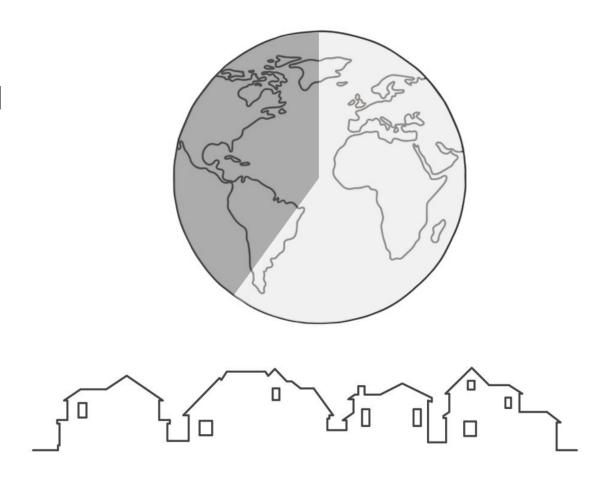


Facade Segmentation for Solar Photovoltaic Suitability

Ayca Duran¹, Christoph Waibel², Bernd Bickel³, Iro Armeni⁴, and Arno Schlueter¹

- ¹ Chair of Architecture and Building Systems, ETH Zurich, Switzerland
- ² Flemish Institute for Technological Research (VITO), Belgium
- ³ Computational Design Lab, ETH Zurich
- ⁴ Gradient Spaces Lab, Stanford University



Introduction

Buildings account for almost 40% of global energy use and CO₂ emissions [1].

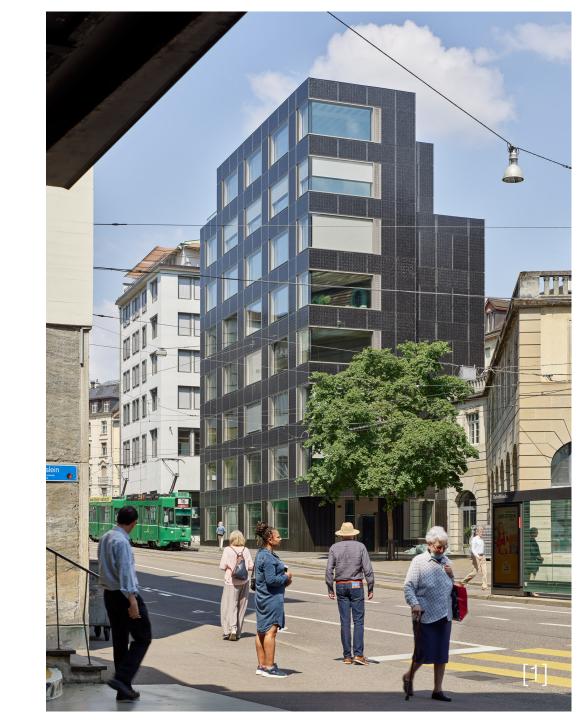
More than 85% of Europe's buildings were constructed before 2000, and around 75% exhibit poor energy performance.

[1] United Nations, "THE STRATEGIC PLAN 2020-2023," 2020, www.unhabitat.org.

Introduction

Facade retrofits for on-site energy generation with **building-integrated photovoltaic (PV) facades**

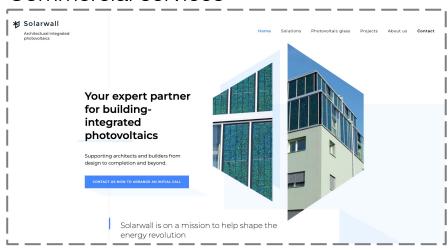
Especially in contexts where..


- roof areas are insufficient
- ground-mounted arrays are infeasible.

[1] Philip Heckhausen. jessenvollenweider – Amt für Umwelt und Energie, Basel. https://www.philipheckhausen.com/photos/amt-fuer-umwelt-und-energie/.

Research problem

sonnenfassade.ch


25% / 50% /100%

International Energy Agency (IEA)

Suitable building envelope parts: 20% [2]

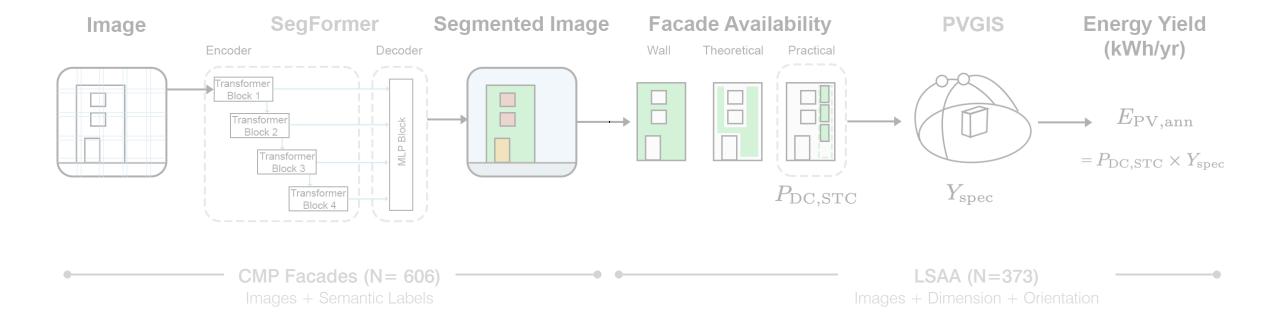
Commercial services

PVWatts

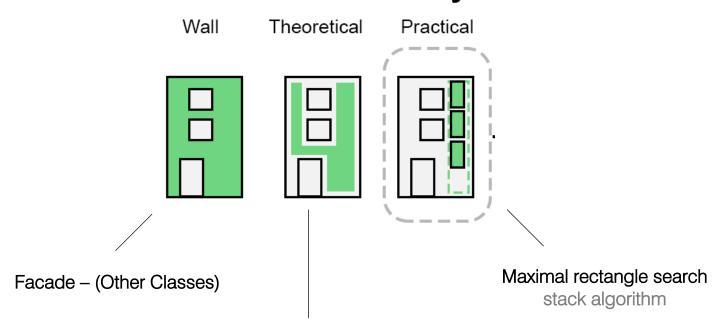
manual user input

Aims and contributions

An automated methodology to..


- Estimate PV potential for facades more accurately by considering architectural details.
- Bridge the gap between theoretically eligible surfaces and a practical buildingintegrated PV layout design.

Method

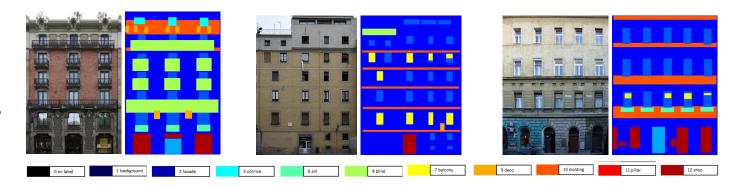


Method

Facade Availability

Wall – (Buffers + min. area threshold)

one full module size with buffers



Datasets

CMP Facades [1]: 606 annotated images with 13 classes of architectural elements (training, validation, test).

LSAA [2]: 373 rectified images of facades with known facade area and orientation from 10 cities (application).

 24.1×20 41.5°

 11.1×12 106.5°

 26.8×19 304°

 $14.9.8 \times 13$ 88°

[1] 1 Tyleček R and Šára R (2013) "Spatial Pattern Templates for Recognition of Objects with Regular Structure Pattern Recognition Lecture Notes" In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142.

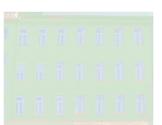
[2] Zhu P, Para W R, Fruhstuck A, Femiani J and Wonka P (2022) "Large-Scale Architectural Asset Extraction from Panoramic Imagery" In: IEEE Trans. Vis. Comput. Graph. 28.2, pp. 1301–16

Facade Segmentation

SegFormer B5

ETH zürich

Method	mloU	Pixel Acc.	Precision	Recall	F1
Ours (SegFormer-B5)	0.52	0.76	0.68	0.68	0.68
Auto-Context (ST3) [1]	0.36	0.66		0.49	
Auto-Context (PW3) [1]	0.38	0.68		0.49	
Baseline – Uniform Rand.	0.03	0.08	0.08	0.06	0.05
Baseline – Majority Class	0.03	0.24	0.02	0.08	0.03



https://arxiv.org/abs/1606.06437. Version Number:1.

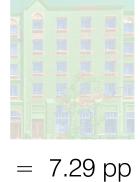
[1] Raghudeep Gadde, Varun Jampani, Renaud Marlet, and Peter V. Gehler. Efficient 2D and 3D Facade Segmentation using Auto-Context, 2016. URL

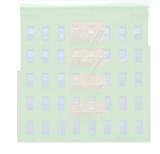


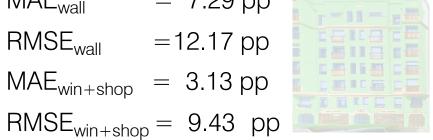
Facade Segmentation

SegFormer B5

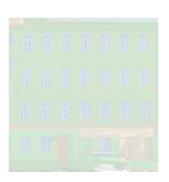
ETH zürich





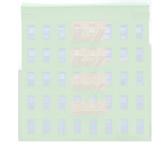


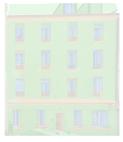
 $\mathsf{RMSE}_{\mathsf{wall}}$

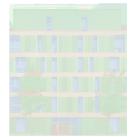


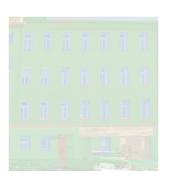
	Wall (%)	Window+Shop(%)	Rest (%)	almitaniani an lan
GT (Ground Truth)	49.39	16.08	34.53	
Pred (Prediction)	47.42	16.48	36.10	1 bulli in a 14

Facade Segmentation

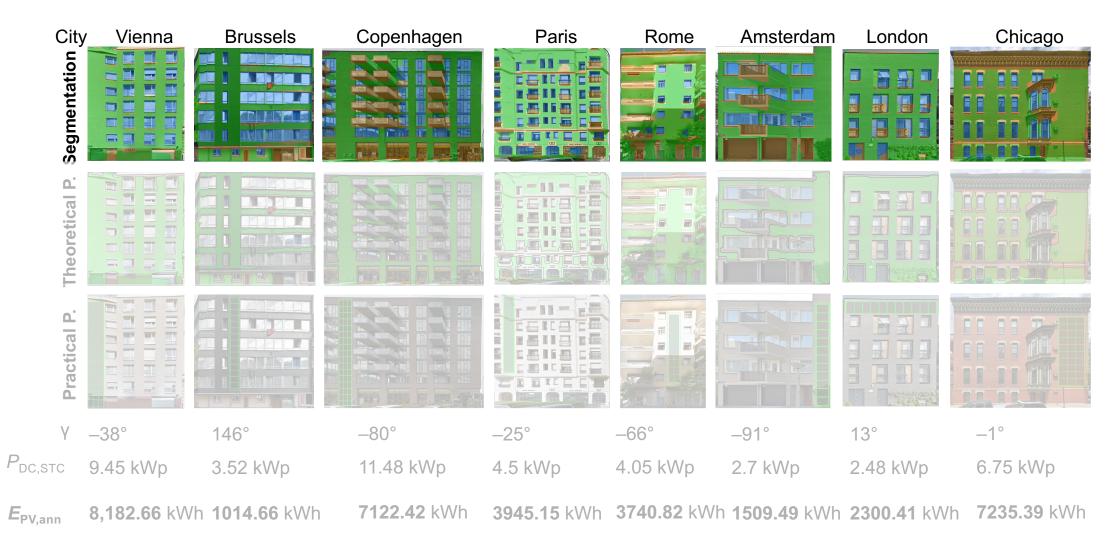

SegFormer B5







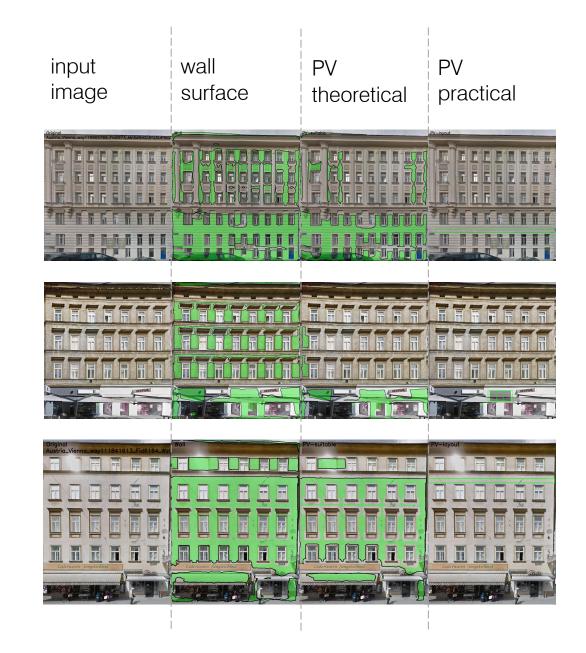
Method	Bg	Fac	Win	Door	Corn	Sill	Balc	Blind	Mold	Deco	Pill	Shop
Ours	0.74	0.62	0.69	0.46	0.51	0.48	0.50	0.56	0.37	0.52	0.33	0.43



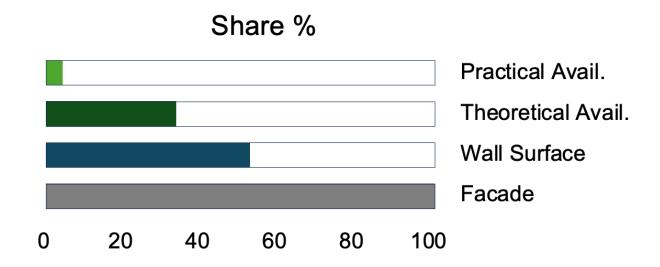
Application

Key Findings

Facade articulations can significantly **reduce installable PV potential**.


In total, 14 facades with $f_{PV, theoretical} > 0.30$ have zero panel count $(small^{*,1} size)$

*small = 720×875 mm, large = 935×1300 mm ¹ https://www.3s-solar.swiss/downloads-teraslate#systemeproduktes



Key Findings

Theoretical availability **overestimates** the installable capacity, particularly for highly articulated facades.

Conclusion

An **automated pipeline** integrating **semantic segmentation** into practical **PV layout design.**

Scalable to **city-wide screening** using ortho-rectified street-level imagery for **retrofit planning**.

- Retrofit prioritization and incentives
- Urban decarbonization plans

Limitations and Future Work

The resulting PV layouts are based on common BIPV panel sizes.

Dependence on the availability and quality of images.

Improve segmentation performance for occluded and complex facades.

Generate alternative layout options with multi-region packing.

Integration into more detailed solar irradiation and shading analysis.

Thank you!

