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Abstract

Building integrated photovoltaic (BIPV) facades represent a promising pathway to-
wards urban decarbonization, especially where roof areas are insufficient and
ground-mounted arrays are infeasible. Although machine learning-based ap-
proaches to support photovoltaic (PV) planning on rooftops are well researched,
automated approaches for facades still remain scarce and oversimplified. This
paper therefore presents a pipeline that integrates detailed information on the ar-
chitectural composition of the facade to automatically identify suitable surfaces
for PV application and estimate the solar energy potential. The pipeline fine-tunes
SegFormer-BS on the CMP Facades dataset and converts semantic predictions into
facade-level PV suitability masks and PV panel layouts considering module sizes
and clearances. Applied to a dataset of 373 facades with known dimensions from
ten cities, the results show that installable BIPV potential is significantly lower
than theoretical potential, thus providing valuable insights for reliable urban energy
planning. With the growing availability of facade imagery, the proposed pipeline
can be scaled to support BIPV planning in cities worldwide.

1 Introduction

The energy use of buildings during their operation accounts for nearly 28% of global carbon emissions
[1]]. Building-integrated photovoltaics (BIPV) offer a promising pathway to reduce these emissions,
with cost reductions and technological advances driving a wider adoption. Although rooftop photo-
voltaic (PV) design has been extensively researched, automated approaches to facade photovoltaic
energy remain underexplored despite its relevance to urban renewable energy [12,3]]. Especially in
high-rise and mixed-use developments, where roof space is limited and ground-mounted systems are
constrained by land availability or regulations, BIPV can be a viable design choice. However, barriers
to facade BIPV integration include current decision support workflows that are slow and tedious,
expert-dependent, and difficult to scale, thus delaying a wider adoption despite the benefits [2].

A range of Geographic Information System (GIS)-enabled tools exist for PV potential assessment,
which typically rely on rooftop geometries, satellite imagery, and irradiance databases, to identify
installation areas and estimate energy yields. Some extend to facade applications, such as Son-
nenfassade.ch [4] and PV Watts [3]], but these often treat facades as uniform surfaces and overlook
their complex architectural qualities. Although archetype-based approaches exist [6], a thorough
consideration of facade-level details and obstructions remains an understudied area. Recent work
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has applied conditional adversarial networks [7] to segment facade imagery using the CMP Facades
dataset [8] and estimated the theoretical PV potential assuming that the raw wall share of a facade can
be fully covered with BIPV panels [9]]. Although this approach automatically identifies PV-eligible
wall surfaces, it does not progress to practical system design, such as feasible panel layouts.

In this study, we introduce a segmentation-and-layout workflow that bridges the gap between identify-
ing eligible surfaces and a practical system design. This automated workflow includes (1) segmenting
facade components, (2) constructing PV-suitability masks by excluding openings and protrusions with
clearance buffers, and (3) generating practical panel layouts based on module size. This produces
estimates in physical units (area in m2, peak power in kWp, and annual energy yield in kWh) and
layout visualizations suitable for integration into solar cadastres or retrofit planning.

2 Data and Method

Datasets. We use two datasets for model training and application. The CMP Facades dataset [§]]
provides annotations per pixel for 13 classes: background, facade, window, door, cornice, sill, balcony,
blind, molding, deco, pillar, shop and unknown. The data set consists of 606 annotated images. The
unknown class is ignored in both loss computation and metric evaluation. To demonstrate the
conversion from pixel fractions to energy yield calculations, 373 facades are randomly sampled from
the Large Scale Architectural Asset (LSAA) dataset [[10]. In the application phase, ortho-rectified
images and location data provided in the LSAA dataset are utilized. The dimensions and orientation
of the facade are manually obtained from Google Earth, a platform easily accessible to users.

Model and implementation details. We adapt the classifier head of SegFormer-B5 model [11]],
initialized from the ADE20K]12]-finetuned checkpoint, to the 13 classes of CMP Facade dataset.
The images are resized to 640 x 640 pixels. Data augmentation includes horizontal flips, small
shifts, scaling and rotation, brightness/contrast adjustment, HSV jitter, and light Gaussian blur
(Appendix. The model is trained using the AdamW optimizer (learning rate 2 x 10~%, weight
decay 10~“) with a cosine learning rate schedule and 5% warm-up. The batch size is 4, constrained by
GPU memory. The loss combines inverse-frequency class-weighted cross-entropy and 0.5 x soft Dice
loss over non-unknown classes. Early stopping (patience 10) is applied within 80 epochs. At inference,
logits are bilinearly upsampled and argmax operation is applied per pixel. The hyperparameters are
tuned following a small grid-search (Appendix |A.3).

PV mask construction. PV-suitable masks are derived from semantic predictions by (i) selecting
pixels classified as facade, (ii) removing window, door, and shop pixels with dilated buffers to
account for frames and installation clearances, (iii) excluding balcony, cornice, sill, molding, deco,
pillar, and blind with class-specific buffers and area thresholds, and by (iv) removing small connected
components below a minimum area threshold equivalent to one panel size with buffers.

Let P denote PV-suitable pixels and F’ all facade pixels. The PV fraction per image is then:

P
fev = IF: (1

With known facade area Af,caqe (m?), the PV-suitable area is:

Apy = fpv X Afacade  (m?). ()

Panel layout generation and energy yield. To translate PV-suitable areas into installable designs,
we fit standard PV module grids inside the predicted mask. The largest axis-aligned rectangle fully
contained within the mask is then located using a histogram-based maximal-rectangle search. Within
this rectangle, we test both portrait and landscape orientations of common large (L) and small (S)
module sizes with a fixed inter-panel gap (Appendix[A.4). The number of modules along each axis
is computed by the integer division of the rectangle size by the module-plus-gap footprint. The
orientation that maximizes the count while minimizing leftover space is selected.

Given a rating for standard test conditions (STC) per module Pyodule,sTc and the fit module count
Niodules, the installed peak DC capacity is

PDC,STC = Rnodule,STC X Nmodules (kWP)7 (3)



Method mloU  Pixel Accuracy Macro Precision  Macro Recall Macro F1

Ours (SegFormer-BS) 0.52 0.76 0.68 0.68 0.68
Auto—Context (ST3) [14] 0.36 0.66 — 0.49 —
Auto—Context (PW3) [14] 0.38 0.68 — 0.49 —
Baseline — Uniform Random  0.03 0.08 0.08 0.06 0.05
Baseline — Majority Class 0.03 0.24 0.02 0.08 0.03

Table 1: Segmentation performance on the CMP Facades. (—: unavailable metric in the cited study.)

Method  Bg Fac  Win Door Corn Sill Balc Blind Mold Deco Pill Shop

Ours 074 0.62 069 046 0.51 048 0.50 0.56 0.37 052 033 043
Table 2: Per-class IoU on CMP Facades dataset.

We also calculate the location- and orientation-specific annual energy yield (Epv ann) using PVGIS24
(13]. "ﬁﬁe details of the calculation can be found in the Appendix [A.5] The code is available on
GitHu

3 Experiments and Results

Setup and evaluation metrics. We use the CMP Facades dataset for training, validation, and testing
[8]. Segmentation performance for 12 classes is reported using dataset-level mean Intersection-over-
Union (mloU) and mean over per-image mloU values, as well as pixel accuracy, macro precision,
recall, and F1-score over all classes. The formal definitions of these metrics are provided in Ap-
pendix [A.T] Experiments ran on a Windows workstation (Ryzen 9 7950X; RTX 4090 24 GB;
driver 560.94/CUDA 12.6).

Segmentation performance. Our SegFormer-B5 outperforms classical Auto—Context baselines
on CMP. Dataset-level mloU is 0.52 (per-image mean mloU 0.44), with macro precision/recall/F1
of 0.68/0.68,/0.68. To contextualize difficulty, we include two baselines: Uniform Random (each
pixel sampled uniformly from the 12 evaluated classes) and Majority Class (all pixels predicted
as background), evaluated with the same metrics. The IoU score per class is highest for large,
distinct classes such as background and window, and lowest for small, diverse elements such as pillar
(Table[2). We attribute this gap to dataset class imbalance and resolution effects from the stride-4
decoder and bilinear upsampling, although we achieved performance improvements in smaller classes
with data augmentation efforts.

Class-share on the facade surface. PV suitability of a facade is commonly reported as a fraction
of facade area [9]]. Therefore, we additionally present a domain-specific metric that compares the
predicted and true shares of three class groups relative to facade surface: wall, glazing (window+shop),
and others. The predicted pixel share for major facade groups closely matches the ground truth
(GT): wall 47.42% (GT: 49.39%), windows+shop 16.48% (GT: 16.08%), other classes 36.10% (GT:
34.53%). The wall share error is —1.97 percentage points (pp). Across individual images, the mean
absolute error is 7.29 pp and the root mean square error is 12.17 pp.

Application to LSAA. The trained pipeline is applied to 373 facades from the LSAA dataset with
known facade areas. For each facade, PV fraction fpy and PV-suitable area Apy as well as the
largest panel layout within the PV-suitable area are calculated. The method yields an average PV-
suitable fraction of around 38-39% of the predicted facade area after applying clearance buffers and
component cleaning depending on the module size (Table[3). Given the known facade and panel
dimensions, the fitted layout was converted to installed peak capacity (kWp). Qualitative examples of
the resulting layouts is presented in Figure[T]and discussed further in Appendix [A.6] which illustrates
common failure modes related to occlusions, segmentation accuracy, and facade complexity.

Theoretical vs practical panel placement. Figure [T]shows the outputs of each step in the proposed
workflow for eight example facades from different cities. Applying the panel layout generation
procedure reveals cases where large PV-suitable areas in the binary mask do not translate into
practical systems. In total, 14 facades with fpy > 0.30 yield a panel count of zero due to high
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Wall surface (%) Theoretically suitable (%) Practically suitable (%)

54.01 38.62-39.48 4.35-4.75
Table 3: Average shares of PV-suitable surfaces (large—small panels) for the LSAA subset.

ornamentation and narrow or irregular mask regions that cannot fit a single full-size S module with
clearances. The fraction of facade area that can be practically installed with solar panels (LS size)
range between 4 — 5%, compared to a mean theoretical PV-suitable share of around 39% across the
LSAA subset (Table[3). The results confirm that relying on theoretical availability can overestimate
installable capacity, particularly for highly articulated facades, as observed in the application dataset
representing the old building stock in different cities.
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Figure 1: Example applications (with panel size L) from the LSAA subset (N = 373).

4 Conclusion

This study introduces a workflow that generates PV-suitability masks from facade images and trans-
lates them into practical panel layouts and energy estimates. By combining semantic segmentation
and computational design methods, the workflow moves beyond theoretical potential estimation
to produce layouts that can potentially be installed in practice. Evaluation on the CMP Facades
dataset shows competitive performance across major facade classes, and application to a subset
of the LSAA dataset demonstrates scalability across cities. By automatically estimating Apy for
large building stocks, the approach helps prioritize retrofits toward facades with large, uninterrupted
wall fractions. When converted to kWp and paired with irradiance profiles, the results can support
distribution-network planning by mapping potential generation in spatial and temporal dimensions.

The results for the PV layouts are based on a common L and S BIdPV panel sizes for facades. Varied
or custom-sized panels could increase practical potential but would likely incur higher upfront costs.
The generated PV layouts represent the maximum semantically suitable surfaces on facades within the
given geometric constraints, excluding potential aesthetic considerations. Our method generates PV
panel layouts using images and PVGIS integration to predict maximum energy yields by considering
site and orientation specific energy yields. However, if 3D models are available, the accuracy of
energy yield estimations can be improved through radiation simulations, particularly for surfaces
that are substantially shaded. The results support early stage decision making rather than permitting
decisions. Future work will focus on evaluating the generated PV layouts, improving the accuracy of
segmentation performance, and generating design alternatives beyond the maximum panel coverage
to help decision making in facade retrofits with BIPV.
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A Appendix

A.1 Metric Definitions

This appendix defines the evaluation metrics used in Section[3] which quantify different aspects of segmentation
accuracy, class balance, and pixel-share estimation. Let TP., FP., and FN. denote the true positive, false
positive, and false negative pixel counts for class ¢, and let C be the set of evaluated classes (all except unknown).

Intersection-over-Union (IoU), measures the overlap between predicted and ground truth regions for class c,
relative to their union:

TP,
I Uc = . 4
°Ye = TP, + FP. + FN. “
Mean Intersection-over-Union (mlIoU), summarizes overall segmentation performance across all classes:
1
mloU = ﬁ g IoU.. (&)

ceC

Two variants are reported: (1) dataset-level mloU, computed from aggregated counts across all test images; and
(2) mean over per-image mloU values.

Macro Precision and Recall, indicate, respectively, the proportion of predicted pixels that are correct and the
proportion of ground truth pixels that are recovered, averaged equally over classes. Macro recall corresponds to
“Average class accuracy” reported in [14].:

.. 1 TP,
Precision = @ ; 7TPC TTFD.’ ©)

TP

1 c
1= — E —_,
Recal i 2 TP. 1 FN. @)

Macro F1 score is the harmonic mean of macro precision and recall, giving a single measure of class-balanced

accuracy:

__ 2 Precision - Recall

F1 €))

Precision + Recall *

Pixel Accuracy (Overall) is the proportion of correctly classified pixels over all non-ignored pixels:

Zceé TP.
S .co(TP, + FN,)

where C' denotes all non-ignored labels (including class 0). This corresponds to “Overall” in [14].

Acc =

Class-share consistency evaluates how well the predicted pixel share of each class matches the ground truth. For
image 14, let s ; be the predicted share of pixels for class c and sCG;f the ground-truth share. The signed error for
class cis

ASC,i = Sc,i — 5?,? (pp)u
where “pp” denotes percentage points. The mean absolute error (MAE) and root-mean-square error (RMSE)
across N images are:

N
1
MAE, = & ;:1 |Ase.q, ©9)
1 N
2
RMSE. = , | §‘ (Ase.i)?. (10)

<
Il
=

A.2 Data Augmentation Details

All enhancements are applied on the fly during training at a resolution of 640 x 640. Transformations include
horizontal flips with probability p = 0.5; random shifts of up to +£10%, scaling between 0.9 and 1.1, and
rotations of up to £5°; brightness and contrast adjustments with factors in [0.9, 1.1]; HSV jitter with hue shifts of
+10° and saturation and value scaling in [0.9, 1.1]; and Gaussian blur with a kernel of 3 x 3 and o € [0.0, 1.0].

A.3 Hyperparameter Tuning

To set optimizer and training hyperparameters, we carried out a small grid search on the CMP validation split. For
each configuration, we trained the SegFormer model initialized from ADE20K for up to 80 epochs with a cosine



learning-rate schedule and linear warmup (warmup ratio 0.05), using early stopping when the validation mIoU did
not improve for 10 consecutive epochs. The search space comprised learning rates {5x107°, 107%, 2x1074},
batch sizes {2, 4}, and gradient accumulation steps {1, 2}, with weight decay fixed at 10™2. The final model
uses the configuration that achieved the highest validation mIoU under the sweep: learning rate 2x 10~%, weight
decay 1072, warmup ratio 0.05, batch size 4, and accumulation steps 1.

A.4 Panel Placement Parameters

The placement of modules is performed for large (935 x 1300 mm) and small (720 x 875 mm) facade modulesﬂ
with a fixed gap between panels of 0.02 m. Both portrait and landscape orientations are tested.

The binary PV mask has image dimensions (W, Hpx) and known facade size (Wi, Hm). The scale factors
are

Wox g = Hex

W ? Y Hpy

allowing panel dimensions and gaps to be expressed in pixels.

Sy =

To locate the largest axis-aligned rectangle within the mask, we build row-wise histograms of consecutive “PV”
pixels per column and compute the maximal rectangle per histogram using a standard stack-based algorithm.
This ensures the rectangle is fully contained in the PV region.

Within the rectangle, the number of modules per axis is computed as
{Rw +g J {Rh +g J
=\ | Ny = 9
Pw+g pnt+g

where (R.,, Ry) are the rectangle dimensions in pixels, (pw, pr) the panel size in pixels, and g the inter-panel
gap in pixels. Panels are accepted only if fully contained; partial panels are excluded. The resulting grid is
centered in the rectangle.

A.5 Energy Yield Estimation

The annual energy yield is computed from the installed peak DC capacity depending on the module type (large
= 225 Wp, small = 110 pr and the PVGIS-returned annual specific yield:

EPV,ann - PDC,STC X erc (kWh/yr)7 (11)

where Ppc,stc is in Wy, (from [Equation 2) and Yspec is the location- and orientation-specific annual specific
yield [kWh/kWp/yr] returned by PVGIS given the inputs (tilt 90°, facade azimuth, integrated mounting, and
default loss parameters: cable 1%, inverter 2%, PV 0.5%).

HPOA,ann

Yipee = PRann X , Gsto = 1 kW /m?, 12)

Gstc
with Hpoa ann the annual plane-of-array irradiation [kWh/m? /yr] and PRann the annual performance ratio
(%) accounting for temperature, spectral and angle-of-incidence effects, and system losses as modeled by PVGIS.
Substituting [Equation 12]into [Equation 11|yields:

HPOA,aIm

13
Gsrc {13)

EPV,ann - PDC,STC PRann

A.6 Common Failure Modes in Layout Generation

A qualitative assessment shows three recurring failure modes (Fig[2h—c). Foreground occlusions, such as trees,
people, vehicles, trees, are not explicitly segmented and are thus treated as walls, resulting in unreliable PV areas
(Fig[2h). This can be mitigated by an occlusion-removal step, such as detecting and masking foreground objects
or inpainting, and by adding an explicit occlusion/vegetation class, especially for trees that may cast shade.
Pitched roofs are another source of error due to limited representation in CMP, leading to poor segmentation on
sloped geometries (Fig[2p). Adding pitched-roof examples and marking such these as non-suitable can improve
robustness. Finally, highly articulated or repetitive facades, such as textured surfaces, and arrays of balconies,
reduce segmentation quality and expose a limitation of the largest-rectangle heuristic, which overlooks multiple
smaller feasible regions (Fig[2k). Allowing multi-region packing, in other words placing panels across several
disjoint areas, relaxing the single-rectangle assumption, and enforcing minimum cluster sizes can yield layouts
with larger energy generation capacity.

2https ://www.3s-solar.swiss/downloads-teraslate#systemeproduktes
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Figure 2: Failure modes due to occlusions (a), segmentation accuracy (b), complexity of facade (c).
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