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"Why" — The
Global Challenge

How do agricultural practices impact climate change?
How can we mitigate climate change by efficient
agricultural practices?
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How is agriculture well poised to tackle climate change?

60% BOOST
by 2050

Climate Crisis Need for food production Solution: Agriculture as a Carbon
The global food system is a primary increase Sink

driver of the climate crisis[1,2], Projections indicate a required Agriculture as a carbon sink. This
responsible for substantial 60% boost in food production by will be enabled by moving away
greenhouse gas emissions from 2050 to feed a growing global from inefficient resource allocation
agricultural activities alone. population[3] to precise, data-driven land

management. [4]

Such data driven management can be achieved by digitization of the agricultural sector.
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How can we achieve digitization of agriculture?

Agricultural Field Segmentation Tree and Agroforestry

Prerequisite for field level analytics, Delineation

monitoring farm health, crop yield Vital for quantifying carbon
etc.[2,5] sequestration and promoting

sustainability[5,1]

On farm: Water Source
Identification
Essential for managing irrigation,
protecting water quality and
managing food security[6,7]
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Challenges and Limitations of current ML Model

Smallholder Farm
Limitations

Applying remote sensing
and ML to smallholder
farms is challenging due
to the intricate nature of
these systems, which
feature very small fields
(< 2 ha)[8], diverse land
uses, and a mix of natural
vegetation and water
resources.

Lack of Panoptic
Segmentation

Existing work has
practical shortcomings,
often focusing narrowly
on field boundaries while
neglecting
interconnected features
(like trees and water) and
failing to utilize unified
methods like panoptic
segmentation.[9,10]

Lack of Real World
Application

There is a major
disconnect between
academic work and
real-world impact, as
prior systems lack robust
post-processing
heuristics and have not
been comprehensively
evaluated or deployed at
a large scale.
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Our Contributions

We developed and
evaluated a
national-scale system for
granular agricultural
mapping, focusing on
smallholder farms. The
maps are publicly
accessible via an API at
http://agriwithgoogle.co
m.

Moving beyond
traditional field
delineation, we use a
multi-class approach to
segment fields, trees, and
water bodies, providing a
more holistic landscape
understanding.

We introduce novel
post-processing
heuristics to refine model
outputs into final maps,
ensuring

their accuracy,
consistency, and usability
for downstream
applications.

We conduct rigorous,
multi-faceted evaluation
for real-world reliability,
including benchmarking
on public data,
comparison with in-situ
surveys, and on-ground
validation with external
partners
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https://www.google.com/url?q=http://agri.withgoogle.com&sa=D&source=editors&ust=1763120517115839&usg=AOvVaw0_r--P_P90fZgSxPl4o2Az
https://www.google.com/url?q=http://agri.withgoogle.com&sa=D&source=editors&ust=1763120517115985&usg=AOvVaw3JT945YiZ0A2rlhEQk_hFG

Methodology
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Given an input RGB satellite image (left), our goal is to generate both a semantic
segmentation map (center) and an instance segmentation map (right) for
each layer (shown here for Ground Layer only)
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The ALU System

Novel Post Processing
steps that to stitch and
de-duplicate identical
fragments of instances
and remove undesirable
artifacts

Stack of Satellite
images available
for a given S2
cell at different

times
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Using the ML model to
predict instance and
semantic segmentation
for different features for
a given image
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The decoder
generates outputs at
four distinct
resolution scales (1x,
1/2x, 1/4x, 1/8x).

ML Model

Adapted from Gao et. al [11]

The system utilizes a
U-Net framework
featuring a ResNet50
encoder that is
pre-trained on ImageNet
to extract features.

Input Image

At each upsampling stage,
the model employs five
distinct output heads: one for
the semantic segmentation
map S and four for affinity
masks (A) corresponding to
specific layers (ground, well,
tree, cloud).

Loss function:
- Focal loss (extended to multiple
classes) for the semantic
segmentation.
- An average L2 loss for the

affinity predictions
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Semantic branch Affinity branch ground* = {fields, farm ponds, other water}



Inference and Post
Processing




BAT Deduplication

O(v1)

O(Vn)

Left to right: Multiple input satellite images (V1, . . ., Vn) obtained for the ground location beneath (G),

model inference outputs (O(V1), ..., O(Vn)), BAT-based stitching and deduplication yields the final output (F ).
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BAT Deduplication Algorithm

Goal: isolate the single best shape for each
physical object by resolving conflicts between
overlapping detections.

Quality-Freshness Trade-off: The system
addresses the challenge of balancing contour
quality (derived from high-quality sensors)
against data freshness (from recent imagery), as
these attributes are often inversely correlated..

Part 1: Data Preparation and Buck-

eting

Input : A set of detections D,
tiles 7', and metadata M

Output : A final, deduplicated set
of detections Stinal

1. Data Integrity and Prepara-
tion Filter D, T', M to remove en-
tries with broken data links;

Tincomplete  <— Identify and mark
tiles in 7" with incomplete RGB
or a maxed-out detection count;

2. Geographic Bucketing Par-
tition D, T, M into geographic
buckets with wide margins;

// The process in Part 2

is now run for each
bucket in parallel.

Part 2: Parallel Processing per Bucket

forall each bucket in parallel do

3. Stitching Fragmented Detections Dyougary < Iden-
tify all boundary detections;

Dyitchea <— Cluster Dyoundary and union their geometries;
4. Conflict Resolution Dcomplere <— All non-boundary
detections;

S < Resolve overlaps between Dyitchea and Deomplete
// See Alg. 2

5. Chronological Validation Compute image quality
scores ; // See Eq. 1

M’ « Select top-n highest-scoring images;

S’ «+ Create a candidate list from S from images in M’;

Sort S’ by quality, then by confidence;

Sq < Validate and merge S’ into a non-overlapping set ;
// See Alg. 3

6. Final Output Generation Filter S; to remove detec-
tions outside the core area;

end
return The combined and filtered Sq from all processes;
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Boundary Refinement

Left to right: Input satellite image, model output, model output post processed via Dagger removal (the sharp protrusions present in the
field polygons are smoothed out

This is dagger

This is ignored




Boundary Refinement

Goal: remove unwanted dagger like artefacts
from the model predictions

Input: A Polygon with vertex sequence P = {p1,p2,...,Pn}
Output: Polygon without daggers with vertices P’ € P
‘H : Convex Hull of P
Q=HUP,; // Points in P which are on the hull
// Iterate in sequence
for ¢; € Q do
R: sequence of points in P lying between ¢; and g;+1
for each pair (r;,7;) € R x Rdo
if isDagger(r;,r;, P) then
| P < removeDagger(r;, r;, P);
end
end
end
return P
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Experimental Results: System Evaluation

Data Kenya [16] India [36] Vietnam & Cambodia [25]
Metric mloU (Border) mloU (Extent) medloU IoUS50 Polis
Previous 0.58 0.53 0.85 0.89 20.3
ALU (our) 0.61 0.61 0.84 0.93 11.89
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Experimental Results: ML Model Evaluation

Model mloU medloU OS FNR US FPR

ALU (our) 0.60 0.75 1.14 12.64 121 10.68
MaskRCNN [20]  0.51 0.67 1.11 26.47 1.13 17.89
DECODE [35] 0.25 0.07 1.09 0.005 147 1894
ResUNet-a [34] 0.07 0.00 1.21 49.16 1.34 3220

ALU DeepLab
Class mloU medloU OS FNR US FPR mloU medloU OS FNR US FPR

Ground  0.60 0.75 1.14 12.64 121 10.68 0.55 0.63 1.39 3.87 139 13.63
Trees 0.40 047 1.14 3256 1.08 4230 0.11 0.03 136 4094 1.14 50.78
Clouds  0.37 0.00 1.17 61.54 1.00 53.06 0.31 0.08 1.41 4516 1.05 1522
Wells 0.01 0.00 1.00 96.36 1.00 0.00 0.00 0.00 - 100.00 - 100.00




Area in '00 hectares

Post Launch Evaluation: Census Data Comparison
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Comparison of aggregate statistics inferred from ALU outputs with Census Data which shows
good alignment
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Post Launch Evaluation: On-ground Validation in
Telangana India

SL Village No. of No. of Over Under Boundary
No. ag Surveys Farm Fields Segmentation Segmentation Error
1 SUNDARAGIRI 5 60 10 0 0
2 ARNAKONDA 2 29 2 0 0
3  YASWADA 9 61 0 7 0
4 KHASIMPET 19 128 0 4 14
5 PARVELLA 1 1 0 3 0
6 JANGAPALLE 10 105 11 2 5
7 KANDUGULA 25 343 18 0 18
8 IRUKULLA 29 239 6 4 18
9 DURSHED 6 13 4 6 2
10 MALKAPUR 9 53 10 2 0
11 REKURTHI 13 25 23 0 3
12 VELDI 1 9 0 0 3
13 GATTUDUDDENAPALLE 2 12 0 0 0
14 RAMADUGU 5 50 3 0 9
15 KACHAPUR 7 64 0 0 4
16 ALUGUNUR 2 10 0 0 0
17 NUSTULAPUR 5 50 13 2 1
18 SAIDAPUR 7 41 0 0 5
19 CHALLOOR 7 76 2 0 30
Total 164 1,369 102 30 112
Percentage (%) 7.45 2.19 8.18
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Conclusions

Holistic System Development
developed an end-to-end
instance segmentation system that
goes beyond traditional field
boundary detection to map diverse
agricultural features, such as trees
and wells, using
very-high-resolution RGB imagery.

Rigorous Validation

The system was verified through a
multi-faceted evaluation process
that combined public benchmarks
with in-situ surveys and on-ground
validation conducted alongside
external partners.

National-Scale Impact

The project achieved the first
comprehensive mapping of
agricultural land use in India at a
national scale, specifically focusing
on smallholder farms to address
critical social challenges regarding
food security and climate change.

Website and API
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