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Machine learning can be used for leak detection in gas
distribution networks to reduce methane emissions
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Environmental problem

Methane emissions from gas distribution
networks account for an estimated 1% [1]
of total UK greenhouse gas emissions.

Machine learning methodologies offer the
potential to continuously monitor
pipelines, allowing for:

* Realtime detection, localization, and
quantification of leaks

e Swifterresponse and therefore
reduced emissions and increased
safety
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Technical challenges

Developing and deploying machine
learning solutions for leak detectionin
gas distribution networks is challenging
due to:

* Sparse data availability across pipe
networks

* Sensorreadings being inherently
noisy and affected by environmental
conditions

e (Gasdistribution networks have
specific business needs for their
emissions management
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Proposed solution

We developed a probabilistic model,
building on the work of Mucke et al.
(2023) [2], which utilizes a Wasserstein
autoencoder and Bayesian inference to
detect, localize, and quantify leaks in gas
distribution networks from real-time
pressure readings.

We developed and tested our
methodology on a 42km gas distribution
section in the UK.
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Representative training data is simulated for each network
segment for both standard operational and leaking scenarios

Stage 1: Network model Stage 2: Data simulation
(T - \ (-7 ~,  Theinlet conditions for each
Asset data is drawn from various sources o
1 ; I I |nletconditions 1| segmentare used to generate
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Hydraulic equations

The possible inlets are input into
hydraulic equations to simulate
pressure and flow values across the
segment.

Network models are created for each
pressure tier within each network. These
are then broken down into ‘segments’
(smaller sections of the network which l
are contained by pressure sensors) to

reduce the computational modelling

OIS s Leaks are artificially introduced across

load. I
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the segment to simulate operational
conditions for millions of different
scenarios representing potential real
network states.
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The simulated data is used to train an autoencoder to perform

probabilistic leak detection

Stage 3: Training the autoencoder
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Stage 4. Probabilistic leak detection

Latent prior
distribution

Reconstructed data object:
{pressure, flow, leak
location, leak size}
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The model (covering 42km of network) can successfully
detect, localize, and quantify leaks but is heavily dependent on

Sensor coverage

Experiment 1: 100 simulated leaks
assuming pressure data is available
from all 12 installed sensors across
42km of network.

82% 80% 76% 100%

Experiment 2: 3 historically recorded
leaks with variably available pressure
sensor data from the 12 installed
Sensors.

1 Correct 400 0.021 58.3%

2 Correct 250 0.286 58.3%

3 Not - - 38.4%
detected
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Experiment 3: Ablation study to
determine the minimum sensor
count for acceptable model accuracy

Model performance declined after removing 30% of
sensors, we observed that pipes located near active
sensors still detected synthetic leaks accurately, even
when overall network coverage was sparse. This
indicates that spatial coverage, in addition to sensor
count, plays a critical role in scaling probabilistic
modeling effectively.
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Through further deployment, validation, and optimization the
benefits of probabilistic modelling for leak detection can be

realised
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What we have achieved

We successfully developed a
probabilistic machine learning framework
for methane leak detection, localization,
and quantification and tested iton a
section of UK gas distribution network.

The model can identify leaks in near real
time, even with limited data. However, the
results also highlight the minimum data
requirements for reliable performance.
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Benefits

Deploying these models in distribution
networks with sufficient sensor coverage
will enable continuous pipeline
monitoring, providing an early warning
system for leak detection.

This allows for proactive interventions,
improved safety, reduced emissions, and
more accurate reporting.
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Next steps

* Conduct further testing and validation
of the model across additional
network sections.

* Deploy the framework more broadly
and monitor real-time performance.

*  Optimize model accuracy by
recommending sensor placements
and configurations.

* Investigate the use of weighted priors
and emulators to enhance data
generation and model robustness
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