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Abstract

Methane leaks from gas distribution pipelines in the UK contribute significantly
to the country’s total greenhouse gas emissions. Machine learning methodologies
can be employed to improve timely detection of leaks, allowing them to be fixed
sooner, therefore reducing emissions. Here we present a probabilistic machine
learning framework, based on a Wasserstein autoencoder and Bayesian inference,
which has been developed to detect, localise, and quantify leaks within a UK-based
gas distribution system with limited data availability.

1 Introduction

Gas distribution networks (GDNs) consist of pipelines carrying natural gas from transmission network
offtakes (or sources) to supply gas to consumer’s homes. Leaks from these networks, which can be
caused by accidental damage, corrosion, aging infrastructure, or incorrect installation, emit methane
into the atmosphere. This is a significant environmental challenge due to the potency of methane
as a greenhouse gas (GHG) [IPCC, 2021] and a safety hazard due to its flammability. GDNs in
the UK suffer from a large proportion of aging infrastructure and methane emissions from these
pipelines account for an estimated 1% of total UK GHG emissions [National Physical Laboratory,
2017]. Therefore, reducing these emissions through more accurate and timely detection is key to
decarbonising the energy sector and meeting targets set out in the Paris Agreement [Hureau, Geoffroy
et al., 2025, Shirizadeh, Behrang et al., 2023].

Machine learning solutions have the potential to provide continuous monitoring of GDNs and
proactively detect, localise, and quantify methane leaks in real time allowing for swift response and
reduced emissions. Various methodologies have been explored for models to learn the operational
dynamics of networks (pressure and flow profiles) and how they correspond to leaks. Previous work
in this area has involved probabilistic models using operational pressure and flow sensor data across
the network [Gupta et al., 2018] with attention mechanisms developed to weight probabilities [Zhang
et al., 2023a]. Both attention mechanisms [Zhang et al., 2023b] and data simulation [Ebrahimi et al.,
2024] have been explored to handle the lack of available training data representing anomalous leaking
scenarios.

Our challenge was developing these methodologies and deploying a machine learning based leak
detection model to meet the business needs of a UK-based GDN. We built on the work of Mücke et al.
[2023] to develop a Wasserstein Autoencoder (WAE), trained on simulated data, in combination with
a Bayesian inference solver to detect, localise, and quantify leaks from sparse operational pressure
data.

Tackling Climate Change with Machine Learning workshop at NeurIPS 2025.
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2 Method

2.1 Training data generation

Obtaining sufficient training data to develop leak detection models is a significant challenge due to
limited pressure sensors in place across the network and flow data only available at the inlets to the
highest pressure tier. This problem was overcome through simulating representative training data, as
done by Ebrahimi et al. [2024]. Initially, we transformed GDN data to construct a virtual graph-based
representation of the network structure using the networkx package [Hagberg et al., 2008]. We then
combined this network representation with the pandapipes simulation package [Lohmeier et al., 2020]
to generate our training data. Initial conditions are sampled from distributions of the historical sensor
data and corresponding pressures and flows throughout the network are generated. As suggested
by Fan et al. [2021] capturing training data representing both leaking (anomalous) and non-leaking
(normal) scenarios is important for effective training. To obtain a sufficient amount of training data
we generated 1 million non-leaking pressure and flow samples per network segment and 10,000
samples for each leaking scenario. A leaking scenario is each combination of leak location (every
50m along each pipeline) and leak size (0-40% flow out ratio).

2.2 Model architecture

Wasserstein Autoencoders (WAE) are effective for solving a Bayesian inference problem in a gas
network due to their ability to accurately perform dimensionality reduction and approximate relevant
probability distributions.

We trained the WAE using the operational pressure and flow values generated for the network
segment. It then acts as a surrogate model to approximate the likelihood function required for
Bayesian inference.
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Figure 1: (a) Architecture diagram for the process of training the WAE to encode the network
dynamics in the latent space and reconstruct the data object. (b) Schematic for the inference process
for probabilistic leak detection through iterative calculation of the posterior from available sensor
data.

To enable leak detection and quantification, we configured the prior distribution and likelihood
over both the leak location and leak volume. This combined prior can be written as P (θ) =
P (location)× P (volume). The likelihood function represents the probability of observing data. For
a set of observations, x = x1, x2, x3, .., xn, L(θ;x) =

∏n
i=1 p(xi|θ).

The Bayesian inference solver then uses the trained decoder to combine the prior and likelihood to
estimate the posterior distribution. The posterior distribution for both leak location and leak volume
is computed as P (θ | D) = P (D|θ)P (θ)

P (D) .

By using the WAE, the Bayesian inference process becomes computationally feasible, as the au-
toencoder allows for fast and accurate evaluation of the likelihood function. This framework can
efficiently handle the high-dimensional and complex nature of gas network data, enabling real-time
leak detection and probabilistic assessment of leak locations and volumes.
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2.3 Experiments

To test the applicability of our model in practice, we selected a network segment covering 42km of
gas distribution pipelines in the UK. We constructed the graph-based data structure, generated leaking
and non-leaking scenarios and trained two autoencoders: one for predicting leak presence and one
for predicting leak absence. Positive leak detections are triggered if the probability of leak presence
is significantly higher than the probability of leak absence according to a paired t-test.

To validate that our models effectively learned the dynamics of the network, we first tested on a set of
100 synthetically generated leaking scenarios. This test dataset was constructed through sampling the
training dataset and reserving unseen samples for validation. Since there are 12 pressure sensors in
place across the 42km of network, we assume pressure data is available from all 12 in this test set.

To test performance on real incidents we back-tested the model on operational pressure data from 3
time periods where leaks were reported and compared the resulting detections to historical records.
Additionally, we ran the model on pressure data from a 6-month period when no leaks were recorded
to test performance under standard operating conditions.

3 Results and discussion

Our models demonstrated effective learning of the dynamics of the gas network as shown both by the
comparison of operational pressure to latent dimensions learned by the autoencoder (Figure 2) and
through the results on the synthetically generated test data set (Table 1).

Figure 2: We examined the relationship between latent dimensions and pressure in the WAE to
determine whether the WAE captures physically meaningful features.

As shown in Figure 2, several latent dimensions exhibit clear monotonic or nonlinear relationships
with pressure, while others appear less correlated. This suggests that the model organises the latent
space in a manner that reflects underlying physical dependencies even without explicit supervision.
Each component of the model was evaluated using tailored metrics: the latent space structure and
generalisation capability of the WAE were assessed through scatter plots and Frechet Inception
Distance, while the model’s ability to detect leaks was tested on both synthetic and historical
datasets using accuracy metrics for correct pipeline identification, leak localisation, and leak volume
estimation.

When tested on our generated test set, our model achieved an accuracy of 82% for detecting leaks, 80%
for localisation within 50m and 76% for quantification within the correct volume bin. Considering
the sensor placement across the pipeline, with a ratio of 1 pressure sensor to 3.5km of pipeline,
these are exceptional results and provide promising business implications for enabling accurate leak
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detection and quantification. The majority of leaks that were undetected had relatively low flow rates
indicating the model has a lower detection limit. This occurs as smaller leaks do not significantly
impact pressure dynamics in comparison to normal operational fluctuations making them challenging
for detection via pressure dynamics.

Table 1: Model performance on generated leak test set

Leak detection accuracy Localisation accuracy Quantification accuracy Working sensors

82% 80% 76% 100%

When tested on the pressure data for the standard 6 month operating period, our model produced no
false positives indicating strong network understanding. However, testing on historical operational
data over recorded leak periods highlighted the importance of sensor placement and data availability.
There were 3 leaks historically recorded on the network section modeled of which 2 were correctly
detected at least a week before they were reported, demonstrating the potential of our model to enable
timely response and emissions reduction. For the third recorded leak the probability signal output
from the model was not significant enough to trigger a leak detection. Across the network section
12 pressure sensors are installed but across the time periods tested only 5-7 of these were collecting
data. The undetected leak was recorded in a time period where only 5 pressure sensors were available
for the segment and at a location far away from available pressure data. This combination led to the
model’s inability to detect this leak and highlights the importance of data availability for unlocking
the practical benefits of these models.

Table 2: Model performance on historically recorded leaks

Leak Pipeline detected Predicted distance along pipeline (m) Predicted volume (kscm/hr) Working sensors

1 Correct 400 0.021 58.3%
2 Correct 250 0.286 58.3%
3 Not detected - - 38.4%

Our next steps involve continuing to build and deploy these models to cover more of the UK gas
distribution network. As our models are deployed, their real-time performance will be monitored
and leak detections will be validated. Further optimisation of model performance will include
recommendations for pressure sensor placement and settings to increase data availability. Further
work on developing our model architecture could include weighting the prior distribution to account
for sensor location in a similar manner to Zhang et al. [2023b] and exploring the possibilities of
replacing the data generation model with an emulation model to reduce compute costs.

4 Conclusion

Here we present a probabilistic machine learning framework, based on a WAE and Bayesian inference,
which has been developed to detect, localise, and quantify leaks within a gas distribution system. This
model has been successfully tested on a section of the distribution network within the UK and is in the
process of being deployed in production. This will provide continuous monitoring for gas pipelines
offering an early warning system for leak detection, increasing safety, and reducing emissions. The
ability of the model to accurately quantify detected leaks will also allow distribution networks to
improve their overall emissions estimates, tracking over time, and regulatory reporting.
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