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Abstract

Quantifying forest aboveground biomass (AGB) is crucial for informing decisions
and policies that will protect the planet. Machine learning (ML) and remote sensing
(RS) techniques have been used to do this task more effectively, yet there lacks a
systematic review on the most recent working combinations of ML methods and
multiple RS sources, especially with the consideration of forest-specific variables.
This study systematically analyzed 25 papers that met strict inclusion criteria from
over 80 related studies, identifying all ML methods and combinations of RS data
used. Random Forest had the most frequent appearance (88% of studies), while
Extreme Gradient Boosting showed superior performance in 75% of the studies
in which it was compared with other methods. Sentinel-1 emerged as the most
utilized remote sensing source, with multi-sensor approaches (e.g., Sentinel-1,
Sentinel-2, and LiDAR) proving especially effective. Our findings provide grounds
for recommending which sensing sources, variables, and methods to consider using
when integrating ML and RS for forest AGB estimation.

1 Introduction

The main driver of the increasing global deforestation is because forests are mainly valued in terms
of their economic value, such as how much timber or area of land they can provide, rather than on
how much they help regulate climate [27]. To quantify how keeping certain areas of forests can
help the climate, we need to quantify their carbon stock. The best way to measure the amount of
carbon sequestered in a forest is to do so with direct field measurements [5]], but since manually
collecting field measurements at large scale is too costly, RS has been utilized. RS can fly over large
areas of forests to capture information, such as tree density, vegetation cover, and 3D structures, with
minimal disturbance, and these data can be put into forestry allometric equations to calculate AGB.
Combining multiple sources remote sensing is promising because it allows the capabilities of one
source to compensate for the limitations of the other sources, as we summarized in Table|l} There
have been studies aiming to summarize existing work in this area. Ouaknine et al. [21] provided
the comprehensive list of open forest monitoring datasets. Sun and Liu [29] reviewed fundamental
estimation methods, but only for studies in China, and they did not review any ML methods. Rolnick
et al. [24] provided a broad overview of ML in climate change, but with limited focus on forest carbon.
Hamedianfar et al. [10] detailed deep learning methods for forest inventory, but no common non-DL
methods like RF; plus this highly technical approach may be inaccessible to a broad audience. Matiza
et al. [18] reviewed ML and RS approaches for carbon storage, but they did not analyze the specific
combinations of data sources or forest characteristics. Our study addresses those gaps by reviewing
studies done around the world, focusing on forest AGB estimation with ML and combinations of RS
sources (i.e. multi-source RS), and communicating the results in an accessible way to people who
may not have deep expertise in those areas.



2 Methods

The papers in our review were drawn from these search terms: “(estimation OR estimating OR
"machine learning") (multisource OR multi-source OR multisensor OR multi-sensor) forest carbon
biomass map”. The aim was to find papers that surely had a Machine Learning component, used a
combination of different sources of remote sensing data, and for the purpose of mapping carbon stick
or biomass of forests. We retrieved the papers from this search into a database using the public API
from [[1], specifically the google_scholar_internal function. The 25 papers that we drew quantitative
results from were the first 25 that satisfied five of our inclusion criteria: (1) full paper accessible to
us (so most are open access articles, since we are college students with almost no subscriptions to
any journals), (2) used ML in the study, (3) used multiple sources of remote sensing data, (4) had the
end goal being estimation forest carbon, whether it was AGB or BGB or soil carbon, and (5) was
written in the recent 10 years (2014-2024).

The following data was collected for the quantitative database: 1) All the remote sensing sources
that the study took data from. 2) All the ML methods used in the study. 3) If the study used multiple
ML methods for comparison of performance on the same task, or for each method to be used on a
different task. 4) If the study used multiple ML methods for comparison, which method(s) were found
to have the best performance? Since there are many different ways to define "best", we just included
the methods that were explicitly mentioned in the abstract or conclusion with a keyword "best", or
"highest" for metrics like R? for accuracy, or "lowest" for metrics like RMSE or uncertainty. 5) Any
limitations or future steps thoroughly explained. 6) The ultimate task, such as AGB map, BGB map,
general biomass map, multi-scale biomass maps, uncertainty estimation, etc. 7) The location(s) of
the studied forests. 8) The types or characteristics or dominant species of the forests. The forest type
categories we used in our review are not at all mutually exclusive or deterministic — they are meant
to facilitate readers in identifying the papers that work on forests of similar types to their interest.
Since the words people used to describe their forests varied widely between papers, we did our best
to identify the common terms used across papers, and refer to a few sources ([33} 2]]) to determine
the forest types of the papers that did not use exactly those common terms (so we related their terms
to the common terms), and of the papers that did not have any terms about the type of their forest (for
those, we used the geographical latitude and longitude of the area to determine the type based on the
external sources cited above). 9) The scale of the study: region, country, or global. Python libraries,
namely Pandas, Matplotlib, Seaborn, and NumPy, were used to manipulate and visualize data.

3 Results & Discussions

We created a linteractive databas which everyone can filter by forest types, data sources, ML
methods, or any keywords they want to find relevant papers that we reviewed. A summary table and
the abbreviations of ML methods and data sources can be found in the Appendix.

Most of the ML methods had roughly similar appearance frequency (see Appendix), except for
Random Forest, which was used in around 88% of the studies — as the model for the end task—AGB
estimation and sometimes as the model for other intermediate tasks in the data processing pipeline.
We put the methods into groups in Figure[I]to see the trend in a bigger picture. Random Forests are
still the most commonly used methods, and most of the methods found to have the best performance
fall into the three most frequently used groups: Random Forest (RF, QRF, RRF), Gradient Boosting
(XGB, LGBM, CatBoost), and Neural Network (CNN, BayesResNN). 11 out of 25 studies compared
multiple ML methods for the AGB estimation task, and found the model(s) that performed best. RF
was part of all the studies that compared multiple MLs, but was only found to be best in 4, whereas
XGB was only used in 4 studies, but was found to perform the best in 3. For instance, [17] found
that XGB had best estimations of AGB in high and low range values, while XGB, RF, LR performed
similarly in medium range, so XGB also improved the overestimation-underestimation issue.

The most frequently used data source was Sentinel-1, followed by Sentinel-2, ALOS-PALSAR,
Landsat, MODIS, GLAS/ICESat LiDAR, and GEDI LiDAR. However, since GLAS/ICESat and
GEDI are both spaceborne LiDAR, we can also say that spaceborne LiDARs were the most frequently
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used source. In 2022, Sentinel-1 only came at the 7th, ALOS-PALSAR the 13th, while Landsat sat at
the top of the frequency rank of sensors in [18].

ML Groups

Figure 1: Frequency of ML methods by Groups

The heatmap 2] shows that Sentinel-1, Sentinel-2, and spaceborne LiIDAR (GEDI) were most often
used together. They made a combination of passive optical, active optical, and radar, complementing
each other’s strengths and limitations. LiDAR had very limited availability and high costs, so when it
was not available, combinations of passive optical and radar also used well together quite often. For
example, Landsat and Sentinel-1, or MODIS and Sentinel-2, or MODIS and PALSAR. Nonetheless,
some of those studies that used only passive optical and radar sensors faced a common issue of
saturation, and LiDAR was usually the recommended solution to that issue. Another observation was
that when a study used Sentinel-2, they’d likely also include LiDAR or DEM. This is likely because
Sentinel-2 is a passive optical sensor with no ability to infer canopy height, an important variable in
estimating AGB, and LiDAR or DEM can provide that information.
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Figure 2: Heatmap: binary co-occurrence of two data sources

Feature selection was found to be a critical factor influencing the models’ performances in many
studies. A key finding from the literature is that a well-executed variable selection process can
significantly enhance model accuracy. For instance, Li et al. [16] demonstrated that feature selection
substantially improved the performance of all their models, with XGBoost showing the most signifi-
cant gains. Similarly, Huang et al. used the Least Absolute Shrinkage and Selection Operator
(Lasso) to reduce over 30 initial numerical parameters to just seven. However, there is a contrasting
perspective in the literature. Some studies, such as that by Li et al. [17]], opted against feature
selection. Their decision was based on two main arguments. First, their datasets had a limited number
of variables, and they were concerned that multiple rounds of selection would eliminate crucial data,
particularly from Sentinel sensor variables. Second, they argued that their chosen models, specifically



Random Forest (RF) and XGBoost, were inherently robust against noisy variables. They noted that
RF is generally unaffected by noisy predictors, while XGBoost’s regularization objective helps to
restrain their influence. Since this was somewhat contrasting with how many studies using RF and
XGB did perform feature selection and noted the improved performance, it would be an interesting
topic to look into the relationship between feature selection and choice of ML models.

3D structural data from Shuttle Radar Topography Mission or other digital elevation models seems
to be frequently used in the studies that didn’t have LiDAR data, when it was used, it was usually
one of the the most important predictor variables. [14] had Landsat OLI and Sentinel-2 as the two
main remote sensors, with the addition of DEM data, and found that DEM was the most important
variable. [[13]] also had optical sensors and radar sensor as Sentinel-2B, Sentinel-2A, Sentinel 1A,
with the inclusion of DEM data.

There are also variables not from remote sensors that were found to be critical as well. Phenological
characteristics, the seasonal patterns and timing of biological events of different forest types and
different tree species, was found to be a valuable one. When [36] inputed phenological variables
into their model, they achieved a higher R-squared result. Although their study area had a specific
dominant forest type and dominant species, an implication of their work was that incorporating data
about phenological characteristics and dominant species significantly improved the accuracy of AGB
estimation. Phenological characteristics were also used to help extracting the distribution information
of their study subject (larch trees) in [L1]. In addition, the close relationship between phenological
data and time were a major advantage for AGB estimations. Forests’ carbon flux varies over seasons,
but the commonly used spectral variables from optical sensors only reflected the state of the forests at
one point in time. Therefore, the AGB estimation based solely on those variables couldn’t be scaled
temporally [36]. With phenological variables in play, we can create what [36]] called time-consistent
AGB models. In [11]’s study, their LSTM model did well in the last stage of their study pipeline,
which was extrapolating biomass components at the regional scale. It is reasonable because LSTM is
a type of recurrent neural networks that is specialized in working with time-series and sequential data,
and time is an important indicator in the phenological data they used. When [11] compared LSTM
with RF for this task, they found that the LSTM model was less prone to underestimation of biomass,
and this characteristic became more obvious when the sample unit biomass was increased.

Another insight was that different ML algorithms may be suitable for different stages of a forest
carbon mapping pipeline In mapping AGB in alpine regions of Yunnan, [36] used three different ML
methods through their pipeline: logistic regression to extract phenological parameters from Landsat
and work with MCCDC; SVM to take in in phenological parameters and classify forest dominant
tree groups; and RF to take in forest dominant tree groups mapping and create AGB map for the
region. [11] compared RF and MLR for creating Plot-Scale Biomass Component Estimation Model;
used SVM for the extraction of Larch Distribution Information on the Basis of Vegetation Phenology
Characteristics; and compared RF and LSTM for the extrapolation of Biomass Components at the
Regional Scale. [32] used an optimized RF regressor to calculate early estimates of carbon storage at
the canopy scale in the footprints of ICESat-2/ATLAS LiDAR data; and used a deep neural network
to create regional-scale carbon storage maps from those early LiDAR estimates and Landsat data.

4 Conclusion & Future Steps

This review highlights the machine learning methods and the remote sensing sources and combinations
with the highest usage frequency and performance. Our recommendation for future studies on
estimating forest AGB is to, in terms of remote sensing data sources, combine multiple sources of
remote sensing data, at least passive optical and radar optical, such as Sentinel-1 with Sentinel-2 or
MODIS with ALOS-PALSAR, to address coverage and saturation limitations. In addition, including
data that can indicate the forest’s 3D structure, like from DEM or active optical sensors, can enhance
accuracy and mitigate the overestimation-underestimation problem. In terms of ML methods, Random
Forest is a great baseline method due to its long history of reliability, but it may also be worth trying
other methods that had proven success recently, such as Extreme Gradient Boosting or CNN. We
also emphasize the importance of feature selection and ensuring the spatial heterogeneity of sample
plots to improve model performance. Additionally, rather than just using one ML method, different
ML methods can be leveraged at various stages of the data processing pipeline. Future work should
also take into account the types, phenological characteristics, and dominant species of the forests in
building estimation models.
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5 Appendix

nighttime

Available in only
certain small areas

Passive optical Active optical Radar (SAR)
(LiDAR)
Sensors Sentinel-2 GLAS (ICESat) Sentinel-1
MODIS ALOS-PALSAR
Landsat
Capabilities | Widely and freely Able to measure 3D | Can penetrate dense
available structural data canopies and clouds
High resolution Can work at Can work at
nighttime nighttime
High resolution
Limitations | Cannot work at Expensive Lower resolution

than optical
Saturation issues

Cannot penetrate
dense canopies or Cannot penetrate
clouds clouds

Table 1: Capabilities and limitations of most common categories of remote sensor modalities

5.1 Abbreviations of ML methods
¢ Random Forest (RF)
* Quantile Random Forest (QRF)
* Regularized Random Forest (RRF)
* Extremely Randomized Trees (ERT)
* Gradient Tree Boosting (GTB)
* Gradient-Boosted Regression Tree (GBRT)
* Boosted Regression Tree (BRT)
* Gradient Boosting Machine (GBM)
* Light Gradient Boosting Machine (LGBM)
* Stochastic Gradient Boosting (SGB)
» Extreme Gradient Boosting (XGB)
 Categorical Boosting (CatBoost)
* Linear Regression (LR)
e Multi-Linear Regression (MLR)
» Stepwise Linear Regression (StepwiseLR)
* Multivariate adaptive regression splines (MARS)
* Random Forest with Stacking Algorithm (RFStacking)
* Cubist Regression Tree Ensemble (CubistRTEns)
* Stacked Ensemble for RF and boosting algorithms
* Bayesian Regularization Neural Network (BayesRegNN)

5.2 Groupings of ML methods
The ML methods were grouped as follows:
* ’Random Forest’: ['RF’, ’RRF’, "QRF’, ’ERT’],
* ’Gradient Boosting’: [’GTB’, ’"GBM’, "GBRT’, 'BRT’, 'LGBM’, "SGB’, ’XGB’, "Cat-
Boost’],
* ’Linear Regression’: ['MLR’, ’LR’, ’Stepwise LR’, "M ARS’],



"Neural Networks’: 'LSTM’, "QRNN’, "CNN’, ’ANN’, 'BayesRegNN’, *Keras’],

’Support Vector Machines’: ['SVM’, "SVR’],

’Stacking/Ensembles’: ["RFStacking’, ’StackedEnsemble’],

’Cubist’: [CubistRTEns’],

"k-NN’: 'kNN’]

5.3 Summary table

Study Data sources ML methods used
171 ALOS-PALSAR, DEM, MODIS RF, kNN
[38] ALOS-PALSAR, Landsat MLR, RF
(1] Airborne LiDAR, Optical GF-1/PMS1 LSTM, MLR, RE, SVM
1] ALOS-PALSAR, GLAS/ICESat LiDAR LR, QRNN, RF, SVM,
(spaceborne), MODIS Stepwise LR
3] S/ILC.;?)Si/SICESat LiDAR (spaceborne), Landsat, CubistRegrTree
(3] ALOS-PALSAR, Sentinel-1, Sentinel-2 Cony eras, MLR, RE,
[30] GLAS/ICESat LiDAR (spaceborne), MODIS, CatBoost, GBM, LGBM, REF,
SRTM XGB
6l Airborne LiDAR, Landsat, RaDAR, Sentinel-1 RF
(2] GLAS/ICESat LiDAR (spaceborne), MODIS RF
. BayesRegNN, GBM, QRF,
[14] DEM, Landsat, Sentinel-2 RE. RRF. kNN
ALOS-PALSAR, Airborne LiDAR, MODIS,
[20] SRTM RF
9] Sentinel-1, Sentinel-2 RF, SGB
[1R]] ALOS-PALSAR, Airborne LiDAR, Landsat RF
22 SLAS/ICESat LiDAR (spaceborne), MODIS, GBM
entinel-1
28] Sentinel-1, Sentinel-2 ANN, RF, SVM
[25] Landsat, Sentinel-1, Sentinel-2 MLR, RF, SVR, kNN
23] DEM, GEDI LiDAR (spaceborne), Sentinel-1, CatBoost, GTB, LGBM, RF,
Sentinel-2 XGB
@] GEDI LiDAR (spaceborne), GLAS/ICESat RF
LiDAR (spaceborne), Sentinel-1, Sentinel-2
ALOS-PALSAR, GEDI LiDAR (spaceborne),
[19] R RF
adarsat-2
[15] DEM, GF-2 multispectral, Sentinel-2 RFStacking
[26] GEDI LiDAR (spaceborne), SRTM, Sentinel-1, BRT, RE, XGB
Sentinel-2
371 GLAS/ICESat LiDAR (spaceborne), GLASS LAI, | ANN, CatBoost, ERT, GBRT,

Landsat, MODIS

MARS, RF, SGB, SVR

(8]

ALOS-PALSAR, GEDI LiDAR (spaceborne),
Landsat, SRTM, Sentinel-1, Sentinel-2

RF

(7]

Landsat, Sentinel-1

LR, RF, XGB

Table 2: Data sources and ML methods used in selected studies.
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5.4 Visualizations of Quantitative Results
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Figure 3: Frequency of ML methods used

Number of studies

\3 e < X
& & s S eg\s\ & & N &%\“ o
& &
N *®°
&
Best ML Methods found when different methods are compared

Figure 4: Best ML methods found in studies that compared multiple methods
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Figure 5: Most common combinations of data sources
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Figure 6: Frequency of forest types studied
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Figure 7: Frequency of geographical locations of the studied forests

China made up around half of the locations of the studies, making it the most frequently appeared
country in Figure[/| Since none of the terms were China-related, and all papers were selected from
the first-appeared results on Google Scholar rather than from related papers, this may point to some
interesting geographical trend of research in the field.
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