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Abstract

We introduce SpLIIF to generate implicit neural representations and enable arbi-
trary downscaling of weather variables. We train a model from sparse weather
stations and topography over Japan and evaluate in- and out-of-distribution ac-
curacy predicting temperature and wind, comparing it to both an interpolation
baseline and CorrDiff. We find the model to be up to 50% better than both CorrDiff
and the baseline at downscaling temperature, and around 10-20% better for wind.

1 Introduction

Accurate, high-resolution weather data is a cornerstone for addressing the multifaceted challenges of
global climate change. [1, 2] To meet this need, machine learning provides a powerful alternative
to computationally intensive numerical models.[3] The field has seen rapid progress, evolving from
CNNs,[4] to GANs,[5, 6] to more recent transformer-based architectures[7–10] and state-of-the-art
diffusion models,[11–15] that excel at generating the realistic, high-frequency spatial details.

Despite these advances, a critical accuracy gap remains, stemming from a reliance on gridded
reanalysis datasets. These datasets, while comprehensive, can diverge from the ground-truth weather
captured by sparse, irregularly-spaced weather stations.[16] For effective climate adaptation—which
demands precise, site-specific forecasting—this discrepancy can be a major hurdle. The key challenge,
therefore, is to develop models that can directly leverage the high-fidelity signal of on-the-ground
station data to drive more accurate and reliable predictions.

To bridge this gap, we introduce the Sparse Local Implicit Image Function (SpLIIF). While prior
work has individually leveraged sparse station data,[17, 18] topography,[9] or continuous repre-
sentations,[19, 20] SpLIIF uniquely combines all three, using an Implicit Neural Representation
(INR)[21] to generate a continuous model of the weather—an approach well-suited to capturing the
inherently continuous and non-linear dynamics of atmospheric systems. We compare this approach
to a state-of-the-art model (CorrDiff)[14] that downscales dense weather maps using a U-Net CNN
and generates physically consistent high-resolution results via diffusion. Our approach proves highly
accurate and outperforms CorrDiff with a 50% improvement in temperature prediction and 20% in
wind speed, particularly in complex terrain. Hence, our work contributes to the development of more
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accurate weather models and therefore more effective and practical tools for global climate change
adaptation and resilience.

2 Methods

Model architecture – SpLIIF can simultaneously process two types of input weather data: dense
gridded data Xd ∈ RH×W×Cd (e.g. from numerical weather prediction models), and/or irregularly
spaced sparse point data Xsp ∈ RN×Csp (e.g. observations from weather stations).

Xsp is first transformed into a dense tensor, X ′
d ∈ RH′×W ′×Csp , using an Inverse Distance Weighting

(IDW) interpolation scheme with learnable weights. If provided, Xd is interpolated to this intermedi-
ate resolution (H ′×W ′) and concatenated along their channel dimension ∈ RH′×W ′×(Csp+Cd). This
raw feature representation passes through an MLP to project the features into an initial latent space
representation L0 ∈ RH′×W ′×CL . L0 is then interpolated to the desired resolution and concatenated
with the static, high-resolution topography data, L1 ∈ RH′′×W ′′×(Ctopo+CL). This high-resolution
latent space is then passed through an Enhanced Deep Super-Resolution (EDSR) network[22] that
learns and sharpens spatial features, whilst retaining the size of the feature space.

Decoding and loss calculation – From the latent space, output weather variables can be decoded by
interpolating the higher-dimensional space at N arbitrary query coordinates before passing through
a final MLP that produces the output weather variables ∈ RN×Cout . When calculating losses, the
N locations are positions of weather stations not present in Xsp and used to calculate the L1 loss
(during training) or the RMSE (during evaluation). This decoding step, where the higher-dimensional
latent space is interpolated to potentially off-grid station locations is the key aspect that allows SpLIIF
to learn a continuous representation of the weather.

Datasets – JMA Weather Station Data (sparse input)[23] (training and evaluation), hourly observa-
tions of temperature, wind speed and wind direction. Stations are distributed across the entirety of
Japan. Median distance between adjacent JMA stations is 0.1 degrees. Topography Data (training
and evaluation)[24], downsampled to 600m resolution. ERA5 (dense input) (only evaluation)[25] just
2m_temperature, u10m and v10m variables.

Training – The model was trained using hourly weather data collected in 2018, from 70% of the
weather stations covering Japan with the exception of Hokkaido. The weather features used were
temperature (normalized from [-30, 40]°C to [-1, 1]), wind strength (normalized from [0, 30]m/s to [0,
1]), and wind direction (decomposed along u and v directions). To manage memory usage and increase
batch diversity, this region was partitioned into square patches (∼ 150×150km≡ H ′′ = W ′′ = 256).
Within each patch, subsets of up to 30 stations are selected, 80% of which are used as inputs, whilst
the rest are used to calculate L1 loss on all variables. Batches comprised 10 patches, exposing the
model to a range of topographical features and dynamic weather patterns in each training step, thereby
promoting robust generalization. Training took 10h on a single T4 GPU (compared to a few thousand
hours on A100s for CorrDiff).

3 Results

3.1 SpLIIF vs Baseline

To evaluate the model’s ability to generalize to unseen locations, we measured the Root Mean Square
Error (RMSE) between SpLIIF’s predictions and ground-truth observations. The evaluation was
performed by taking the same input stations as during the training, but comparing the predictions to
the 30% of stations held out from the training set. We used a random 10% of time slices from the
2018 test year, and performed inference using multiple configurations, varying the number of nearby
stations used as input. The results, shown in Figure 1, are presented as the percentage improvement
of SpLIIF’s RMSE over an Inverse Distance Weighting (IDW) baseline, and plotted as functions of
both the evaluation station’s altitude and the number of input stations.

SpLIIF consistently outperformed the baseline across all tested variables, with the magnitude of the
improvement depending on the meteorological variable, station altitude, and the number of input
stations. For temperature (Figure 1a), improvement was most pronounced at higher altitudes. While
gains at sea level were modest (1-5%), they increased significantly with elevation, reaching between
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Figure 1: Percentage improvement in RMSE of SpLIIF over the baseline by altitude and number of
input stations for (a) temperature, (b) wind speed, and (c) wind angle. Shaded regions indicate the
standard deviation on the mean across the different time slices and spatial patches.

25% and 50% at altitudes approaching 1000m. For wind speed (Figure 1b), SpLIIF achieved a
5% to 30% improvement over the baseline. Unlike temperature, this improvement did not show a
monotonic trend with altitude, but it did increase as the number of input stations decreased. Finally,
the improvement for wind angle (Figure 1c) was more modest (≲10%), with a slight increase at
higher altitudes and no clear dependence on the number of input stations.

These findings can be interpreted by considering the interplay between SpLIIF’s two primary data
sources: the sparse station observations and the continuous, high-resolution topography map. In data-
dense scenarios with many input stations, both model and baseline have sufficient data to construct
an accurate downscaled representation. In data-sparse scenarios, however, the model increasingly
leverages the topography to inform its predictions, which the baseline has no access to. Hence
explaining why the largest performance gain occurs when observational data is limited. Additionally,
the more substantial improvements seen for temperature are physically intuitive; temperature has a
strong, direct relationship with elevation (lapse rate), which the model can effectively learn from the
topography. In contrast, wind patterns are influenced by more complex, local aerodynamic effects
that are not as easily captured by elevation alone.

3.2 SpLIIF vs CorrDiff

Next, we evaluated SpLIIF’s out-of-distribution generalization against a state-of-the-art baseline,
CorrDiff. We compared the absolute error of both models on data from Hokkaido, a region unseen
during training for either model, using ground-truth data from JMA stations for 10% of hours in 2023.
For SpLIIF, we tested inference using both JMA station data and ERA5 reanalysis as inputs. Figure 2
plots the error distributions, where superior performance is indicated by a higher density of small
errors and a lower density of large errors.

For temperature (Figure 2a), SpLIIF demonstrates a clear advantage, producing approximately twice
as many predictions with an absolute error below 1°C and a tenfold reduction in errors exceeding
10°C, leading to a 50% reduction in the mean error. Notably, SpLIIF’s performance was even stronger
when downscaling from ERA5 inputs, despite being trained exclusively on JMA station data. This
result highlights the INR architecture’s ability to generalize to different input data sources without
re-training. The performance gains for wind speed were more moderate, with SpLIIF showing
15% more low-error predictions and a threefold reduction in high-error predictions (Figure 2b),
leading to a 20% reduction in the mean error. For wind direction (Figure 2c), SpLIIF using JMA
inputs yielded the best results, with a 10% reduction in the mean error. We hypothesize that direct
ground-truth observations provide a crucial signal for local wind dynamics—influenced by microscale
topography—that is absent in coarser reanalysis data.

A qualitative comparison further highlights these differences. Figure 2d shows a downscaled cold
front from April 2023. SpLIIF’s temperature map contains more high-resolution features that directly
correspond to the underlying topography, details that are absent in the CorrDiff output. Similarly,
SpLIIF’s wind fields show more complex patterns in mountainous regions, with wind directions
aligning more closely with valley structures and contouring mountain ranges, demonstrating a superior
ability to capture topographically-induced weather effects.
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Figure 2: (a-c) Probability density functions (PDFs) of absolute errors for downscaled predictions
CorrDiff, SpLIIF using sparse JMA station data as input (SpLIIF-JMA), and SpLIIF using ERA5 as
input (SpLIIF-ERA5). Error distributions are shown for (a) temperature (°C), (b) wind speed (m/s),
and (c) wind direction (°). (d) Example inference during a cold front. First column shows topography,
and the next three columns respectively show the temperature and wind from ERA5, SpLIIF-ERA5
and CorrDiff. Bolded arrows are a guide-to-the-eye for wind along a valley.

4 Conclusion and future work

In this work, we introduced SpLIIF, a downscaling model that combines a continuous implicit neural
representation with sparse station data and high-resolution topography. Our model significantly
outperforms traditional baselines, reducing temperature RMSE by up to 50% in complex terrain, and
surpasses a state-of-the-art diffusion model in out-of-distribution tests. These results highlight the
value of integrating real-world, sparse data and demonstrate that INR-based architectures offer a
flexible and powerful alternative to the grid-dependent backbones common in generative models. By
generating more physically plausible weather fields from sparse inputs, SpLIIF contributes to the
development of more effective tools for climate change adaptation.

Future work will enhance SpLIIF’s applicability to climate action by extending it to predict variables
critical for extreme events, like precipitation, and by exploring hybrid architectures that integrate our
data-driven approach with physically-constrained models.
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