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Motivation

« \Why precipitation nowcasting?

« Critical for disaster response, transportation safety,
urban drainage, and winter road maintenance

« Climate change increases the need for accurate,
reliable nowcasts a few hours into the future

« Neural weather models (NWM) are the state-of-the-art
for nowcasting

« Deployed operationally by industry and meteorological agencies

« Many applications require reliable probabilistic
forecasts in addition to pure accuracy

* Probabilistic forecasts must be calibrated

* Deep learning models tend to be overconfident, i.e., predicted
probabilities too high compared to observed frequencies
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Calibration

« Foraclassification model, perfect calibration is defined formally as
P(Y =Y|P=p)=p, Vpecl0,1]
« This definition it isn't well-suited for ordered classes like precipitation

o A better definition for calibration in our case is
P(r>R|P(r>R)=p)=p, Vpe[0,1], R€[Ry,...,Rk]
“given 100 predictions for precipitation >1.0 mm/h at

confidence 0.8, we expect that for 80 of those
predictions, precipitation will exceed 1.0 mm/h”’

- We estimate this by the expected thresholded calibration error (ETCE]
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Calibration
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For all thresholds, compute
average confidence and
observed frequency in all

confidence bins. Group into bins

by confidence

This difference is the final
ETCE score.
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Calibration methods

* Inthe literature, there are many post-processing tools for calibrating classification models —
to our knowledge tools are absent in the context of forecasting

« \We extend and test multiple calibration tools in the forecasting domain

« Selective scaling
« Empirical observation: mispredictions poorly calibrated in particular
« Train a misprediction detector and selectively scale only mispredictions with a learned temperature value

ﬁ _ Jsoftma,x(z): if Q =Y
Jsoftmax(z/T): if g 7& Y.
« Detectorisa3-layer MLP from the original publication extended with lead time conditioning

« |nthe paper, we have listed details of all tested methods
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Results

Calibrator num. params Fl-score avg. ETCE A ETCE (%)
Uncalibrated - 0.565 0.079 —
Temperature scaling 1 0.565 0.080 -1.0

LTS (no lead time cond.) 2,107 0.573 0.096 -21.3
LTS 2,143 0.564 0.082 -3.6
Selective scaling w/ MLP 3,254 0.564 0.060 235
Selective scaling w/ Segformer BO 3,728,550 0.567 0.062 21.6
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« Selective scaling improves calibration by more than 20 %
« Usinga Segformer BO as the misprediction detector does not
provide further improvement compared to the simple MLP approach
« QOther calibration methods fail to improve calibration compared

to the baseline
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