Probability calibration for precipitation nowcasting

Lauri Kurki, Yaniel Cabrera, Samu Karanko

Motivation

- Why precipitation nowcasting?
 - Critical for disaster response, transportation safety, urban drainage, and winter road maintenance
 - Climate change increases the need for accurate, reliable nowcasts a few hours into the future
- Neural weather models (NWM) are the state-of-the-art for nowcasting
 - Deployed operationally by industry and meteorological agencies
 - Many applications require reliable probabilistic forecasts in addition to pure accuracy
- Probabilistic forecasts must be calibrated
 - Deep learning models tend to be overconfident, i.e., predicted probabilities too high compared to observed frequencies

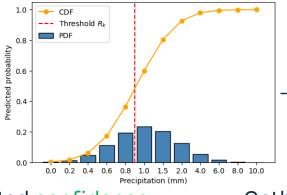
Calibration

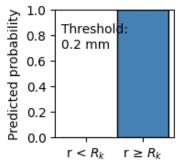
• For a classification model, perfect calibration is defined formally as $\mathbb{P}(\hat{Y}=Y|\hat{P}=p)=p, \ \forall \ p\in[0,1]$

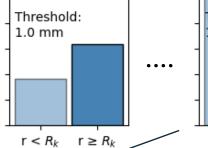
- This definition it isn't well-suited for ordered classes like precipitation
 - A better definition for calibration in our case is

$$\mathbb{P}(r > R \mid \hat{P}(r > R) = p) = p, \ \forall \ p \in [0,1], \ R \in [R_1, \ldots, R_K]$$
 "given 100 predictions for precipitation >1.0 mm/h at confidence 0.8, we expect that for 80 of those predictions, precipitation will exceed 1.0 mm/h"

We estimate this by the expected thresholded calibration error (ETCE)


$$\text{ETCE} = \frac{1}{K} \sum_{k=1}^{K} \sum_{b=1}^{B} w_b \left| \frac{|\operatorname{acc}(b, R_k)|}{\operatorname{conf}(b, R_k)} - \frac{\operatorname{conf}(b, R_k)|}{\operatorname{observed frequency}} \right|$$
 Difference between average observed frequency and confidence

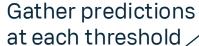

Calibration

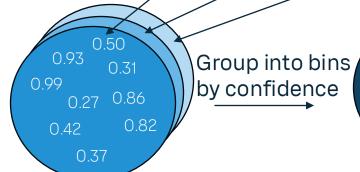

$$ETCE = \frac{1}{K} \sum_{k=1}^{K} \sum_{b=1}^{B} w_b \left| \underline{acc(b, R_k)} - \underline{conf(b, R_k)} \right|$$

Difference between average observed frequency and confidence

Apply all thresholds R_k

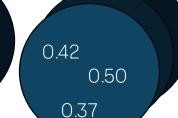
Threshold:
10.0 mm $r < R_k \quad r \ge R_k$


[0.33, 0.66]


Predicted confidence = 1 – CDF at the threshold

For all thresholds, compute average confidence and observed frequency in all confidence bins.

This difference is the final ETCE score.



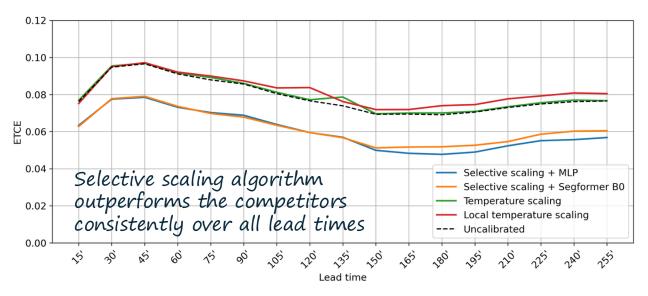
• • • •

[0.0, 0.33]

[0.66, 1.0]

Calibration methods

- In the literature, there are many post-processing tools for calibrating classification models to our knowledge tools are absent in the context of forecasting
- We extend and test multiple calibration tools in the forecasting domain
 - Selective scaling
 - Empirical observation: mispredictions poorly calibrated in particular
 - Train a misprediction detector and selectively scale only mispredictions with a learned temperature value


$$m{\hat{p}} = egin{cases} \sigma_{ ext{softmax}}(m{z}), & ext{if } \hat{y} = y \ \sigma_{ ext{softmax}}(m{z}/T), & ext{if } \hat{y}
eq y. \end{cases}$$

- Detector is a 3-layer MLP from the original publication extended with lead time conditioning
- In the paper, we have listed details of all tested methods

Results

Calibrator	num. params	F1-score	avg. ETCE	Δ ETCE (%)
Uncalibrated	_	0.565	0.079	_
Temperature scaling	1	0.565	0.080	-1.0
LTS (no lead time cond.)	2,107	0.573	0.096	-21.3
LTS	2,143	0.564	0.082	-3.6
Selective scaling w/ MLP	3,254	0.564	0.060	23.5
Selective scaling w/ Segformer B0	3,728,550	0.567	0.062	21.6

- Selective scaling improves calibration by more than 20 %
 - Using a Segformer B0 as the misprediction detector does not provide further improvement compared to the simple MLP approach
- Other calibration methods fail to improve calibration compared to the baseline

Xweather