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Motivation Calibration

* Why precipitation nowcasting? * For a classification model, perfect calibration is defined formally as
* Critical for disaster response, transportation safety, urban drainage, and P(Y=Y|P=p)=p, Vpel0,1]
winter road maintenance * This definition it isn’t well-suited for ordered classes like precipitation
* Climate change increases the need for accurate, reliable nowcasts a few e A better definition for calibration “given 100 predictions for precipitation >1.0 nmum/h
h into the fut . _ at confidence 0.8, we expect that for 80 of those
ours Into the Tuture INn OUur case IS predictions, precipitation will exceed 1.0 mm/h’
P(r>R|P(r>R)=p)=p, Vpel0,1], R€[Ry,...,Rx]
* Neural weather models (NWM) « We estimate this by the expected thresholded calibration error (ETCE)
* Deep learning models are the state-of-the-art for nowcasting [1] 1 S

_ Difference between average
ETCE = — wy, |acc(b, Rx) — conf(b, R
K ; ; b Jacc 2 ( .l observed frequency and confidence

* Deployed operationally by industry and meteorological agencies
 Many applications require reliable probabilistic forecasts in addition to pure
accuracy
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* Probabilistic forecasts must be calibrated
* Problem formulated as a classification task for binned precipitation amounts
* Predicted probability for each class should match future observed frequency
 Deep NWMs tend to be overconfident, i.e., predicted probabilities too high
compared to observed frequencies
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* Our contribution:
 Expected thresholded calibration error as a better-suited
metric for ordered classes such as precipitation
e Evaluation of different post-processing calibration
methods in the forecasting domain
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Group into bins
by confidence

For all thresholds, compute average
confidence and observed frequency in
all confidence bins.

This difference is the final ETCE score.

Calibration methods Results

* In the literature, there are many post-processing tools for calibrating Calibrator num. params _Fl-score avg, ETCE A ETCE (%)
classification models — to our knowledge tools are absent in the context of Uncalibrated N 0.565 0.079 -
forecastin Temperature scaling 1 0.565 0.080 -1.0

5 LTS (no lead time cond.) 2,107 0.573 0.096 -21.3
LTS 2,143 0.564 0.082 -3.6
* We extend and test the following calibration methods in forecasting domain: Selective scaling w/ MLP 3,254 0.564 0.060 23.5
 Temperature scaling 2] Selective scaling w/ Segformer B0 3,728,550 0.567 0.062 21.6
 Asingle parameter T is learned to scale the predicted logit-vector
P = Osoftmax(2/T) * Selective scaling improves calibration by >20 %
* Local temperature scaling (LTS) 3] * Using a Segformer BO as the misprediction detector does not provide further
e Extension of temperature scaling to image domain improvement compared to the simple MLP approach
 Learn aregressor to map a logit vector into a scaling value for each 012
position in the predicted image / precipitation map
* Additive and multiplicative lead time conditioning with FiLM 0.10 1
* Selective scaling (4]
 Empirical observation: mispredictions poorly calibrated in particular 008"
* Train a misprediction detector and selectively scale only mispredictions 4 o6
O 0,
with a learned temperature value -
0 2 if ] = 0.04 1 y ; ' —— Selective scaling + MLP
- _ ) Tsoftmax(2); =Y Selective scaling algorithm outperforms —— oo e T o er 8o
Jsgftmax(Z/T), if f] # Y. 0.02 - the COM}Oét’ltOVS COV\SleeV\t(y over all — Temperature scaling
(@ad tl.VV\eS —— Local temperature scaling
* Detector is a 3-layer MILP from the original publication extended with 000 7= Uncalibrated
Iead. t.ime conditioning - | | S oS 8 S P S PP H S S S S PSP
* Additionally, we test Segformer models with increasing complexity Lead time

Data and model Summary

* Reliable probabilistic nowcasting is important for disaster response,
transportation safety, but NWMs tend to be overconfident

 We propose expected thresholded calibration error as a better suited metric for
calibration in the context of ordered classes, like precipitation

* By selectively scaling only mispredictions of the base model, we could reduce
miscalibration by more than 20 %

 The probabilistic base model is a proprietary
multimodal model with three main
components
* Spatial encoder, axial attention,
classification head
* |nputs to the base model:
« MRMS radar images; GOES satellite images;
NWP predictions
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