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Motivation

* Many real-world policy and market problems follow a leader-follower
structure (Stackelberg Games).
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* Dynamic, uncertain environments:

* Learning Algorithm: for leader-follower best-response in Stackelberg Markov
Games — dynamic leader-follower interactions with discounted rewards over
infinite horizon.



Stackelberg Markov Games

* Single Leader Single Follower:
* Leader commits to a policy first:

* Follower then chooses a policy: x
* Follower: best response to any leader’s policy:

* Bestresponse: BRy(m;) = argmax Vg (m;, mp)
nf

* Leader: anticipates follower will take its best response to 7}
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Extension to Infinite Followers

* Single Leader Infinite Follower
 Mean field (MF): followers’ states and actions have a distribution
* Followers: reduce to a single representative agent «& MF distribution ug
* Followers’ MF equilibrium: for any m; , they stabilize at (g, uz)(m;)

« Stationary Stackelberg MF equilibrium (SS-MFE): (rt;, np, ur)



Learning Framework

Initial leader policy

T[LO 7%

[
1
i Initial MF distribution
1
v : ’uch,O

4 ) ;
1
i
i 4 - N\

Followers’ MF Equilibrium i ]I:gllowers’ Best R?{SPonSkeT )
P 1 ) ] -
(n'F‘,ulﬁ) € arg g%); VF(nf, g, yF) i Ty € arg HTIT?EX VF(ﬂL,np,Mp )
i RL ) o lterate until
: v k,t+1 — kT
Iterate until i Hr Hr
\_ -/ T+l =k ! Followers’ MF Update
L L : kT kt+1
! K : Hr = U
i
i
Leader’s Next Policy N .

nf*tt € argmax Vy (mry, mk, pk)
U»
RL

[ S —————



Numerical Experiment (3-Node Power Network)
* Utility company (leader): charge electricity rates

* To minimize difference of energy expenditure incidence (EEI) between different
Income groups.

EEl = Energy Spending /Income

* Prosumers (followers): learns battery charge/discharge strategies
based on price signhals

1000 Low Income
500 Middle Income 300 High Income

e Consumers: 3000 VERY Low Income per node

* RL Algorithm: PPO; Simulation: 100 Days



Results
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Thank you!
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