Learning in Stackelberg Markov Games

Jun He¹, Andrew L. Liu¹, Yihsu Chen²

Emails: he184@purdue.edu, andrewliu@purdue.edu, yihsuchen@ucsc.edu

¹Edwardson School of Industrial Engineering, Purdue University ²Electrical and Computer Engineering, University of California, Santa Cruz

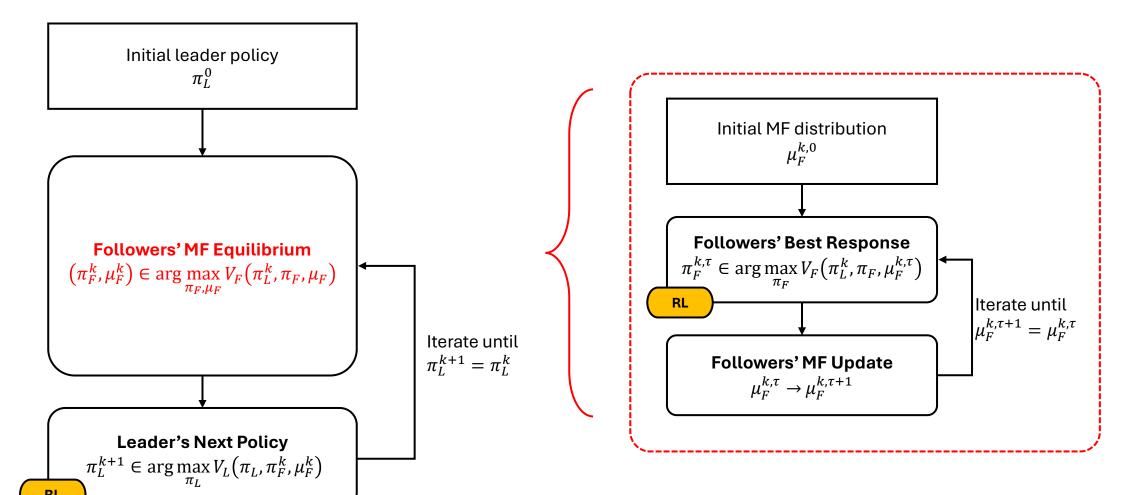
Motivation

 Many real-world policy and market problems follow a leader-follower structure (Stackelberg Games).

- Dynamic, uncertain environments:
 - **Learning Algorithm:** for leader-follower best-response in Stackelberg Markov Games dynamic leader-follower interactions with discounted rewards over infinite horizon.

Stackelberg Markov Games

- Single Leader Single Follower:
 - Leader commits to a policy first: π_L
 - Follower then chooses a policy: π_F
- Follower: best response to any leader's policy:
 - Best response: $BR_F(\pi_L) \coloneqq \arg \max_{\pi_F} V_F(\pi_L, \pi_F)$
- Leader: anticipates follower will take its best response to π_L
 - Leader's optimal policy $\pi_L^{\text{SSE}} \in \arg \max_{\pi_L} V_L(\pi_L, \text{BR}_F(\pi_L))$
 - As a result: $\pi_F^{\text{SSE}} \in \text{BR}_F(\pi_L^{\text{SSE}})$

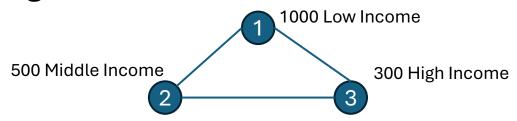

Stationary Stackelberg Equilibrium (SSE)

$$(\pi_L^{\rm SSE},\pi_F^{\rm SSE})$$

Extension to Infinite Followers

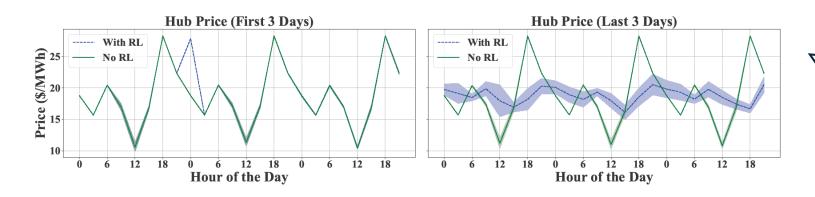
- Single Leader Infinite Follower
 - Mean field (MF): followers' states and actions have a distribution
 - **Followers:** reduce to a single representative agent \leftrightarrow MF distribution μ_F
 - Followers' MF equilibrium: for any π_L , they stabilize at $(\pi_F, \mu_F)(\pi_L)$
 - Stationary Stackelberg MF equilibrium (SS-MFE): $(\pi_L^*, \pi_F^*, \mu_F^*)$

Learning Framework

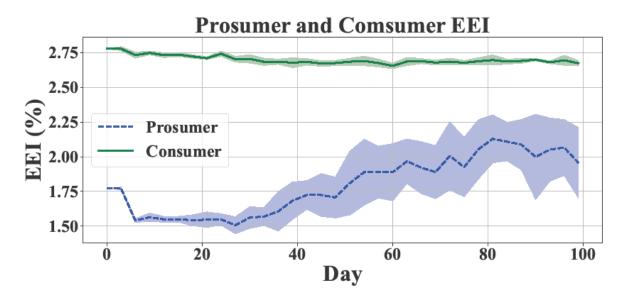


Numerical Experiment (3-Node Power Network)

- Utility company (leader): charge electricity rates
 - To minimize difference of **energy expenditure incidence (EEI)** between different income groups.


EEI = Energy Spending / Income

• **Prosumers (followers):** learns battery charge/discharge strategies based on price signals



- Consumers: 3000 VERY Low Income per node
- RL Algorithm: PPO; Simulation: 100 Days

Results

Having renewables makes price changes less extreme

Ensures **equity** across income groups while **promoting renewable adoption**.

Thank you!