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Motivation & Problem Formulation Equilibrium Learning Framework

Tackling Climate Change via Hierarchical Decision Making Initial leader policy 7y

 Climate and energy systems involve a leader (utility company) and followers
(prosumers, consumers).

 Coordinating such systems efficiently requires anticipatory strategies —i.e.,
leaders account for how others respond. 7T1’r( € arg T?T?;X VF(ﬂf; 7TF)

Follower’s Best Response (using RL)

« Example: utilities set energy prices = households respond by adjusting charging, lterate until
usage, or storage. nf“ _ n]lf

_ Leader’s Next Policy (using RL)
Research Question k+1 € arg max VL(T[L: zbg )

 Can we learn equilibrium policies for hierarchical, multi-agent systems that model
real-world climate and energy interactions?
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Solving with Reinforcement Learning (RL)
e“iQ*’n_i(si:')
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*  &-net: discretize P(4;) into V;® & project proj.(m;) = arg min_ N€||7Tl ;' ||

Stackelberg Markov Game Formulation » Boltzmann policy: 7; == softmax,, (- |s;) =

* Two levels: leader-follower agents.

e State dynamics: energy demand, renewable generation, price dynamics.

 Objective: design equitable electricity rates for different income groups to
promote renewable energy adoptions.
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* Follower’s best response: ﬁ};‘ = proj; (softmaxaF (Q* ”L))

~ =k
*  Leader’s next policy: ! = proj, (SoftmaxaL (Q*'TCF))

Stackelberg Markov Games

Convergence Guarantee (Sketch)

 Under mild assumptions (reward & transition continuity, boundedness, Lipschitz
condition best response with d; dy < 1), if a; = log(1/¢)/¢(¢) and when K >

log1/q,a,(2/¢), the leader’s policy satisfies ||ﬁL — nLSE” < 0(e).

What is a Stackelberg Game?

 Sequential-move game:
 Leader: commits a strategy first.
* Followers: commit strategies after knowing leader’s strategy.

Reward Regularization

Classical vs. Markovian Formulations »  Add a strongly concave function: r/**¢ = r; + H(m;(- |s;))
«  Classical: (i) static, one-shot interaction, (ii) complete information, and (iii) * Smooth & unique best response: Lipschitz continuity guaranteed.
equilibrium over single move  Policy updates converge to a unique fixed point.

 This work: (i) infinite-horizon Markov game, (ii) stochastic, partially observed
dynamics, and (iii) repeated interactions via state transitions.

Extension to Infinite Followers

Single Leader Single Follower

 Index:i € {L,F}, and —i refers to the opponent of i
* State & action spaces: S;, 4;

* Probability transition kernels: P;:S; X A; X A_; = §;
* Rewards:1;:5; XS_; XA; XA_; > R

Single Leader Infinite Followers

 Real-world scenarios with a central authority interacting with a large agent
population.
 Each follower’s impact is negligible; collective behavior shapes dynamics.
. Discount factors: y; € (0,1] * Followers are assumed homogeneous & interchangeable.
’ * Inthe limit as population size — oo: each agent faces a mean-field (MF)

 Policies: ;: S; = P(4; el s : : : :
b (4;) o ¢ distribution over states and actions; interactions reduce to a representative agent
*  Value functions: V;(s;, s_;, m;, m_;) = E[ X0 viri(sieS_ie @ip a_it)| Sio = and the MF.
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Initial leader policy ;)

, " k,0
Follower's Best Response ( Initial MF g
*  Given leader’s policy 7y, follower finds BRp (1) := arg max,, Vg (7, 7p)
Followers’ MF Equilibrium p y <
: : : A k Kk K Followers’ Best Response
Leader’s Optimal Policy (Stationary Stackelberg Equilibrium / SSE) (k. uF) € arg ook Vi (L e, ki) < ke Do
PrF € argmaxVF(nL,nF,uF’ )

* Leader anticipates follower will take its best response to m; L U3 J
*  Leader finds optimal policy m°F € argmax,;, V; (m, BRg (1 ’ . -

SEE P ZSE & mL (1, BRE (7)) Leader’s Next Policy Kr Followers’ MF Update |
* Asaresult:mp" € BRp(m;") mitt e arg max Vy (mr, mf, ) g S ) Until ug

converges

Numerical Experiment

IEEE 3-Node Example

Motivation

* Real-world challenge: electricity pricing in presence of Distributed Energy
Resources (DERs).

* Risk of a utility death spiral: wealthier prosumers reduce grid usage, leaving
higher costs for low-income users.

 Goal: Learn tariffs to promote equity, stability & efficiency, and eventually
renewable adoption.

Model Overview

 Leader: utility sets rates per-MWh and fixed charges.
 Followers: 3 aggregators, manage prosumers + consumers.
 Aggregators learn battery policies under MF game setup.

* Learning with PPO: 8 timesteps/day; 100 days; 5 random seeds

Power Network Configuration & Population

 3-node grid with 4 generators and 3 transmission lines.

* Each node has 3,000 pure consumers (income: $15k).

*  Prosumers: 1000 low- ($25k), 500 middle- ($45k), and 300 high-income (S65k) at
Node 1, 2 and 3, respectively.

* Objective: the leader minimizes inequality in energy expenditure incidence (EEI)
= Electricity spending + Household income.

Results: Price Stability

 RL-based learning reduces volatility in nodal prices.
* Daily LMP patterns become more stable over time
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Results: Learned Tariffs

e Per-MWh rates stabilize.
 Fixed charges increase with income.
*  Promotes fairness: align cost burden with ability to pay (EEI difference shrinks).
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