
Learning in Stackelberg Markov Games:

Equitable Energy Price Design

Motivation & Problem Formulation

Tackling Climate Change via Hierarchical Decision Making

• Climate and energy systems involve a leader (utility company) and followers 
(prosumers, consumers).

• Coordinating such systems efficiently requires anticipatory strategies – i.e., 
leaders account for how others respond.

• Example: utilities set energy prices → households respond by adjusting charging, 
usage, or storage.

Research Question

• Can we learn equilibrium policies for hierarchical, multi-agent systems that model 
real-world climate and energy interactions?

Stackelberg Markov Game Formulation

• Two levels: leader-follower agents.
• State dynamics: energy demand, renewable generation, price dynamics.
• Objective: design equitable electricity rates for different income groups to 

promote renewable energy adoptions.

Equilibrium Learning Framework

Stackelberg Markov Games

What is a Stackelberg Game?

• Sequential-move game:
• Leader: commits a strategy first.
• Followers: commit strategies after knowing leader’s strategy.

Classical vs. Markovian Formulations

• Classical: (i) static, one-shot interaction, (ii) complete information, and (iii) 
equilibrium over single move

• This work: (i) infinite-horizon Markov game, (ii) stochastic, partially observed 
dynamics, and (iii) repeated interactions via state transitions.

Single Leader Single Follower

• Index: 𝑖 ∈ 𝐿, 𝐹 , and −𝑖 refers to the opponent of 𝑖
• State & action spaces: 𝑆𝑖 , 𝐴𝑖
• Probability transition kernels: 𝑃𝑖: 𝑆𝑖 × 𝐴𝑖 × 𝐴−𝑖 → 𝑆𝑖
• Rewards: 𝑟𝑖: 𝑆𝑖 × 𝑆−𝑖 × 𝐴𝑖 × 𝐴−𝑖 → ℝ
• Discount factors: 𝛾𝑖 ∈ 0,1
• Policies: 𝜋𝑖: 𝑆𝑖 → ℙ 𝐴𝑖
• Value functions: 𝑉𝑖 𝑠𝑖 , 𝑠−𝑖 , 𝜋𝑖 , 𝜋−𝑖 = 𝔼ൣ
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Follower’s Best Response

• Given leader’s policy 𝜋𝐿, follower finds BR𝐹 𝜋𝐿 ≔ argmax𝜋𝐹 𝑉𝐹 𝜋𝐿, 𝜋𝐹

Leader’s Optimal Policy (Stationary Stackelberg Equilibrium / SSE)

• Leader anticipates follower will take its best response to 𝜋𝐿

• Leader finds optimal policy 𝜋𝐿
SSE ∈ argmax𝜋𝐿 𝑉𝐿 𝜋𝐿, BR𝐹 𝜋𝐿

• As a result: 𝜋𝐹
SSE ∈ BR𝐹 𝜋𝐿

SSE

Numerical Experiment

IEEE 3-Node Example

Motivation

• Real-world challenge: electricity pricing in presence of Distributed Energy 
Resources (DERs).

• Risk of a utility death spiral: wealthier prosumers reduce grid usage, leaving 
higher costs for low-income users.

• Goal: Learn tariffs to promote equity, stability & efficiency, and eventually 
renewable adoption.

Model Overview

• Leader: utility sets rates per-MWh and fixed charges.
• Followers: 3 aggregators, manage prosumers + consumers.
• Aggregators learn battery policies under MF game setup.
• Learning with PPO: 8 timesteps/day; 100 days; 5 random seeds

Power Network Configuration & Population

• 3-node grid with 4 generators and 3 transmission lines.
• Each node has 3,000 pure consumers (income: $15k).
• Prosumers: 1000 low- ($25k), 500 middle- ($45k), and 300 high-income ($65k) at 

Node 1, 2 and 3, respectively.
• Objective: the leader minimizes inequality in energy expenditure incidence (EEI) 

= Electricity spending ÷ Household income.

Results: Price Stability

• RL-based learning reduces volatility in nodal prices.
• Daily LMP patterns become more stable over time

Results: Learned Tariffs

• Per-MWh rates stabilize.
• Fixed charges increase with income.
• Promotes fairness: align cost burden with ability to pay (EEI difference shrinks).
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Leader’s Next Policy (using RL)

𝜋𝐿
𝑘+1 ∈ argmax

𝜋𝐿
𝑉𝐿 𝜋𝐿, 𝜋𝐹

𝑘

Initial leader policy 𝜋𝐿
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Iterate until 
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Follower’s Best Response (using RL)
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𝜋𝐹
𝑉𝐹 𝜋𝐿
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Single Leader Infinite Followers

• Real-world scenarios with a central authority interacting with a large agent 
population.

• Each follower’s impact is negligible; collective behavior shapes dynamics.
• Followers are assumed homogeneous & interchangeable.
• In the limit as population size → ∞: each agent faces a mean-field (MF) 

distribution over states and actions; interactions reduce to a representative agent 
and the MF.

Extension to Infinite Followers

Solving with Reinforcement Learning (RL)

• Boltzmann policy: 𝜋𝑖 ≔ softmax𝛼𝑖 ⋅ 𝑠𝑖 =
𝑒𝛼𝑖𝑄

∗,𝜋−𝑖 𝑠𝑖,⋅

σ𝑎𝑖
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∗,𝜋−𝑖 𝑠𝑖,𝑎𝑖

• 𝜺-net: discretize ℙ 𝐴𝑖 into 𝒩𝑖
𝜀 & project proj𝜀 𝜋𝑖 ≔ argmin𝜋𝑖

′∈𝒩𝑖
𝜀 𝜋𝑖 − 𝜋𝑖′ 1

• Follower’s best response: ො𝜋𝐹
𝑘 = proj𝜀 softmax𝛼𝐹

෠𝑄∗,ෝ𝜋𝐿
𝑘

• Leader’s next policy: ො𝜋𝐿
𝑘+1 = proj𝜀 softmax𝛼𝐿

෠𝑄∗,ෝ𝜋𝐹
𝑘

Convergence Guarantee (Sketch)

• Under mild assumptions (reward & transition continuity, boundedness, Lipschitz 
condition best response with 𝑑𝐿𝑑𝐹 ≤ 1), if 𝛼𝑖 = log 1/𝜀 /𝜙 𝜀 and when 𝐾 ≥

log1/𝑑𝐿𝑑𝐹 2/𝜀 , the leader’s policy satisfies ො𝜋𝐿
𝐾 − 𝜋𝐿

SSE
1
≤ 𝑂 𝜀 .

Reward Regularization

• Add a strongly concave function: 𝑟𝑖
𝑅𝐸𝐺 = 𝑟𝑖 + 𝐻 𝜋𝑖 ⋅ 𝑠𝑖

• Smooth & unique best response: Lipschitz continuity guaranteed.
• Policy updates converge to a unique fixed point.
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