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Abstract

This paper studies a general framework for learning Stackelberg equilibria in dy-
namic and uncertain environments, where a single leader interacts with a population
of adaptive followers. Motivated by equitable electricity rate design for customers
with distributed energy resources, we formalize a class of Stackelberg Markov
games and establish the learning framework for stationary equilibrium. We extend
the framework to incorporate a continuum of agents via mean-field (MF) approxi-
mation. We validate the framework on an energy market, where a utility company
sets electricity rates for a large population of households. Our results show that
learned policies can achieve economic efficiency, equity across income groups,
and stability in energy systems, while also encouraging renewable adoption and
reducing reliance on fossil-fuel generation to mitigate climate change.

1 Introduction

Many real-world scenarios can be modeled as Stackelberg games, where a leader first commits to
a strategy and followers respond rationally based on the leader’s choice. Classical approaches to
solving Stackelberg games often require explicit models of the follower’s objective and best-response
behavior, often through bilevel optimization techniques [1]. As a result, such methods are limited
to stylized, static environments. In contrast, many policy design problems involve dynamic and
stochastic environments, where agents adapt to the evolving system and the leader must learn a policy
that effectively shapes long-run outcomes.

Recent advances in multi-agent reinforcement learning (RL) have opened up new possibilities for
mechanism design. The AI Economist framework [2] exemplifies this by introducing a two-level
RL approach, where one planner leader and economic followers co-adapt in a complex economic
simulation. Theoretical work has also been done for learning Stackelberg equilibria, such as sample
complexity under bandit feedback [3], local convergence of gradient-based dynamics [4], and
Stackelberg-Nash equilibria with myopic followers [5].

We propose a general learning framework for Stackelberg Markov games with infinite-horizon dis-
counted rewards. We first study the two-agent setting, and then extend the framework to incorporate
a continuum of followers via MF approximation. To compute equilibria, we introduce a RL algo-
rithm that alternates between follower and leader best-response learning, without requiring explicit
knowledge of the follower’s reward function. By focusing on equitable electricity rate design, our
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framework promotes solar PV and storage adoption without disproportionately burdening households
who cannot afford such technologies. In turn, widespread adoption of renewables reduces dependence
on fossil-fuel generation, contributing directly to climate change mitigation.

2 The Learning Framework for Stackelberg Markov Games

A Stackelberg game is a sequential-move game in which one agent (leader) commits to a strategy
first, anticipating the other’s response, and the second agent (follower) selects the best response
after observing this commitment. We study Stackelberg interactions embedded in an infinite-horizon
discounted Markov games. Notation-wise, let I = {L,F} denote the index for leader and follower,
respectively. We write −i as the opponent of i; that is, if i = L then −i = F , and vice versa. For any
sets X ,Y , we use X ×Y denotes the Cartesian product, |X | the cardinality if discrete, and P(X ) the
probability measure over measurable X . We let x ∼ Q indicate that x follows distribution Q.

2.1 The Single-Leader-Single-Follower Game

The definition of a Stackelberg Markov game is given below.
Definition 2.1. A Stackelberg Markov game with a single leader and a single follower is a tuple
GS := ({Si,Ai, Pi, ri, γi}i∈I), where Si is a (measurable) state spaces, and Ai is the action space
of agent i. Agent i’s stochastic transition kernel Pi(si, ai, a−i) defines the probability distribution
over next states, given current state si and joint actions (ai, a−i). The reward functions ri : Si ×
S−i ×Ai ×A−i → R specify agent i’s one-step payoff, and γi ∈ [0, 1) denotes its discount factor.

In this paper, we focus on the case in which Si and Ai are discrete and fi-
nite. Each agent’s value function is defined as the discounted total expected return as
Vi(si, s−i, πi, π−i) := E [

∑∞
t=0 γ

t
iri(si,t, s−i,t, ai,t, a−i,t) | si,0 = si, s−i,0 = s−i] subject to

si,t+1 ∼ Pi(si, ai, a−i), ai,t ∼ πi(·|si,t). Provided that the other player chooses π−i, the goal
for agent i is to find the best policy π∗

i that maximizes its value function starting with si ∈ Si such
that Vi(si, s−i, π

∗
i , π−i) ≥ Vi(si, s−i, πi, π−i), ∀πi. For each agent i, at state si, given the oppo-

nent’s policy π−i and state s−i, the agent treats the opponent as part of the environment and solves
a single-agent MDP to compute an optimal response π∗

i . This defines the best response mapping
BRi : Si×S−i×P(A−i) → P(Ai) with which BRi(si, s−i, π−i) := argmaxπi

Vi(si, s−i;πi, π−i).
For notation brevity, we omit the two state arguments and write BRi(π−i) to denote the best response
mappings. To facilitate the analysis of optimal stationary (i.e., time-invariant, memoryless) poli-
cies [6, 7] policies, we introduce the following assumption, and define the stationary Stackelberg
equilibrium (SSE) in the game GS .
Assumption 2.1. There exists a finite R ≥ 0 such that |ri(si, s−i, ai, a−i)| ≤ R, ∀si, ai, a−i, i ∈ I .
Definition 2.2. A policy pair (πSSE

L , πSSE
F ) in GS is an SSE if, for any states sL, sF , it satisfies that

the leader finds the optimal policy πSSE
L ∈ BRL(BRF (πL)). As a result, πSSE

F ∈ BRF (π
SSE
L ).

We now establish the existence and uniqueness of an SSE, which requires the following assumption:
Assumption 2.2. For each agent i, there exist constants di ≥ 0 such that fo any policies
π−i, π

′
−i ∈ P(A−i), one hasDH(BRi(si, s−i, π−i)−BRi(si, s−i, π

′
−i)) ≤ di∥π−i−π′

−i∥1, where
DH(A,B) := max {supa∈A infb∈B ∥a− b∥1, supb∈B infa∈A ∥a− b∥1} is the Hausdorff distance
to measure the distance between two nonempty sets A,B ⊆ Πi, ∀i ∈ I , endorsed by ℓ1-metric ∥ · ∥1.
Theorem 2.1. Given Assumptions 2.1 and 2.2, when dLdF < 1, there exists an SSE to GS .

2.2 General RL Framework

We now introduce a general RL framework for computing an SSE. At each round k, we first
fix the leader’s policy πk

L, and compute the following until πk+1
L = πk

L for some k > 0: (i)
πk∗
F ∈ BRF (π

k
L), and (ii) πk+1

L ∈ BRL(π
k∗
F ). To implement this procedure in an RL setting, we

let si = (si, s−i, a−i) and P i = (Pi, P−i, π−i), and define the Q-function as Qπi,π−i

i (si, ai) :=

E
[∑∞

t=0 γ
t
iri(si,t, ai,t)

∣∣∣ si,0 = si, ai,0 = ai

]
, and optimal Q-function satisfies the Bellman equation

for agent i given π−i as Q∗,π−i

i (si, ai) = ri(si, ai) + γi maxa′
i
Es′∼P i

[
Q

∗,π−i

i (s′i, a
′
i)
]
. However,

this general approach does not guarantee convergence unless the best-response mapping satisfies
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strong regularity conditions such as Lipschitz continuity. The first approach is to use Boltzmann
policy, which uses the softmax operator: πi := softmaxαi

(·|si) = exp(αiQ
∗,π−i (si,·))∑

ai
exp(αiQ

∗,π−i (si,ai))
, ∀i ∈ I,

with hyperparameter αi > 0. It has been proved in [8] that softmax is Lipschitz continuous.
Following [9], we use a finite ε-nets to bound the approximation error to the argmax operator.
That is, for a given policy πi, we define a finite cover N ε

i = {π̂i(1), π̂i(2), · · · , π̂i(N
ε
i )} ⊂ P(Ai)

such that for any πi, there exists π̂i ∈ N ε
i with ∥πi − π̂i∥1 ≤ ε. The projection of πi onto

the net is defined as projε(πi) := argminπ′
i∈N ε

i
∥πi − π′

i∥1. We also define the action gap at si

as δsi(Q
∗,π̂(j)

−i ) := min
ai∈Ai\argmaxQ∗,π̂(j)

−i (si,·)

(
maxa′

i∈Ai
Q∗,π̂(j)

−i (si, a
′
i)−Q∗,π̂(j)

−i (si, ai)
)

, for all

j = 1, · · · , Nε
i . Then, for any ε > 0, there exists a positive function ϕ(ε) and an ε-net N ε

i such that

for all Q∗,π̂(j)
−i and at any state si, δsi(Q

∗,π̂(j)
−i ) ≥ ϕ(ε). Specifically, for k = 0, 1, . . ., the policies are

now updated as: π̂k
F = projε(softmaxαF

(Q̂∗,π̂k
L)) and π̂k+1

L = projε(softmaxαL
(Q̂∗,π̂k

F )).

Theorem 2.2. Let assumption 2.2 hold, and suppose that dLdF < 1. Fix ε > 0 and set αL =
αF = log(1/ε)/ϕ(ε). Let (π̂k

L, π̂
k
F ) denote the policy iterates using projected Boltzmann policies

with ε-net. Then, for any K ≥ log1/(dLdF )(2/ε), the leader’s policy satisfies ∥π̂K
L − πSSE

L ∥1 ≤(
1+dL+2|AL|+2dL|AF |

1−dLdF
+ 1

)
ε = O(ε), where πSSE

L denotes the leader’s SSE policy in GS .

This bound shows that it can closely approximate the true best response, while preserving Lipschitz
continuity. The second approach is to add a regularization term to the reward function, which is
widely used in RL. We then analyze the game using the regularized value function for for each si
such that V reg

i (si, s−i, πi, π−i) := E
[∑∞

t=0 γ
t
ir

reg
i (si,t, s−i,t, ai,t, a−i,t)

∣∣∣si,0 = si, , s−i,0 = s−i

]
,

where rreg
i (si, s−i, ai, a−i) = ri(si, s−i, ai, a−i) +H(πi(· | si)), and H(·) is a ρ-strongly concave

function. In Theorem 4.3 (Appendix 4.3), we show that under standard continuity and boundedness
conditions, the policy iterates converge to a fixed point under the regularized learning dynamics.

2.3 Extension to Stackelberg Games with MF Followers under Regularization

We now consider the extension where there is one leader but an infinite number of followers.
To formalize this setting, we adopt a MF approach in which followers are modeled as homo-
geneous and interchangeable. In the limit as the number of followers approaches infinity, each
individual has negligible influence on the aggregate behavior, which is captured by an MF dis-
tribution over states and actions. We can then focus on the interaction of a single representative
follower responding to the MF. For notational consistency, we retain the index set I = {L,F}.
Let µF,t ∈ P(SF × AF ) denote an MF distribution at time t, representing the joint distribu-
tion of the population’s states and actions in the infinite-agent limit, defined as µF,t(s, a) :=

limN→∞

∑N
j=1,j ̸=i 1(s

j
F,t

,a
j
F,t

)=(s,a)

N , ∀s ∈ SF , a ∈ AF , where N is the number of followers, and
(sjF,t, a

j
F,t) denotes the j-th follower’s state and action pair. The indicator function 1(...) = 1 if the

condition is true and 0 if false. Each agent’s value function is redefined with the addition MF argument:
Vi(si, s−i, πi, π−i, µF ) := E

[∑∞
t=0 γ

t
ir

reg
i (si,t, s−i,t, ai,t, a−i,t, µF )

∣∣∣si,0 = si, s−i,0 = s−i

]
, sub-

ject to si,t+1 ∼ Pi(si, ai, a−i, µF ), ai,t ∼ πi(·|si,t, µF ), ∀i ∈ I. Finally, the evolution
of MF is a mapping Γ : P(SF × AF ) × SL × SF → P(SF × AF ), defined as µ′

F :=
Γ(µF , πL, πF ), ∀µF , πL, πF , as a new component to the game. The stationary Stackelberg MF
equilibrium (SS-MFE) is defined as follows:

Definition 2.3. In a Stackelberg Markov game with MF followers, the tuple (πSE
L , πSE

F , µSE
F ) forms

an SS-MFE, if for any sL, sF : (i) VF (sF , sL, πSE
F , πSE

L , µSE
F ) ≥ VF (sF , sL, πF , π

SE
L , µSE

F ), ∀πF , (ii)
µSE
F = Γ(µSE

F , π
SE
L , πSE

F ), and (iii) VL(sL, sF , πSE
L , πSE

F , µSE
F ) ≥ VL(sL, sF , πL, π

SE
F , µSE

F ), ∀πL.

2.4 Learning Framework for SS-MFE

We re-define the best response mappings with the introduction of the MF: BRi : Si × S−i ×
P(A−i)×P(SF ×AF ) 7→ P(Ai) for both i ∈ I. Then, at each iteration k, given the leader’s policy
πk
L, the follower and MF dynamics proceed through an inner loop with iterator τ = 0, 1, · · · , and
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πk,τ+1
F = BRF (sF , sL, π

k
L, µ

k,τ
F ), µk,τ+1

F = Γ(µk,τ
F , πk

L, π
k,τ+1
F ) until convergence to (πk∗

F , µk∗
F ).

The leader then updates its policy as πk+1
L = BRL(sL, sF , π

k∗
F , µk∗

F ).

Theorem 2.3. Under the same assumptions for Theorem 2.1, there exists a unique stationary SS-MFE

under regularization to GMF if dµµ + dFµ d
µ
F < 1 and

dL
F+dL

µ

1−(dµ
F+dµ

µ+dF
µ )

max{dFL , d
µ
L} < 1,

where the d’s are Lipschitz constants defined in assumptions in appendix. The pseudocode for a
general RL-based algorithm to solving the game is provided in Algorithm 1 in appendix.

3 Numerical Experiment

We apply our framework to a real-world electricity tariff design, motivated by the growing adoption
of distributed energy resources (DERs), such as rooftop solar and battery storage. As higher-income
households invest in DERs, they reduce grid dependence or export energy for profit, thereby lowering
their net payments to the utility. Lower-income households, who are less likely to afford DERs,
continue to rely on the grid and bear a disproportionate share of the infrastructure costs. This dynamic
exacerbates energy inequity and raises serious concerns [10], described as the risk of a utility death
spiral. We adopt the same test case and settings as in [10, 11]. The power network we consider
consists of a 3-node grid with 4 generators and 3 transmission lines. The utility (leader) learns
a pricing policy for per-kWh charges and fixed charges to recover maintenance costs, aiming to
minimize inequality in energy expenditure incidence (EEI), defined as the percentage of household
income spent on electricity. On the follower side, each node hosts 3,000 consumers with income
$15,000. The prosumers (who can produce and consume electricity) population varies by node: 1000
low-income ($25,000), 500 middle-income ($45,000), and 300 high-income ($65,000) at Nodes 1,
2 and 3, respectively. We model 3 aggregators, each representing a node in the grid and managing
a population of both prosumers and consumers. Each learns charging/discharging policies for its
prosumers’ solar and storage systems, and responds to both the utility’s policy and real-time locational
marginal prices (LMPs) determined by a system operator via economic dispatch. We use PPO [12]
and set each simulated day to 8 time steps (3-hour intervals). The utility updates every 3 days, while
aggregators update at every time step. The simulation runs for 100 days over 5 random seeds. Figure 1
compares wholesale prices at the start and end of training, with and without RL. Under RL, price
volatility reduces significantly, and daily patterns stabilize. Figure 2 shows the learned per-kWh
add-on rates and fixed charges. Over time, the utility’s policy converges to a pricing structure in
which higher-income groups have higher fixed charges, helping align payment responsibility with
ability to pay and maintain energy equity. More results are shown in Appendix 4.5.
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Figure 1: Comparison of nodal prices with and without learning. RL reduces price volatility and
leads to more stable daily patterns.
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4 Technical Appendices and Supplementary Material

4.1 Proof of Theorem 2.1 – Existence of an SSE

The proof relies on the well-known Banach fixed point theorem, for which we first restate the
definition of a contraction mapping. In our work, we choose the distance function to be the ℓ1-norm.

Definition 4.1. Let (X , d) be a non-empty complete metric space, where d is a metric on X . A
map T : X 7→ X is called a contraction mapping on X if for any x, y ∈ X , there exists a constant
c ∈ [0, 1) such that d(T (x), T (y)) ≤ cd(x, y).

The Banach fixed point theorem [13] is stated as follows.

Theorem 4.1. Let (X , d) be a non-empty complete metric space, and T : X → X be a contraction
mapping. Then T admits a unique fixed point x∗ ∈ X such that T (x∗) = x∗.

When the mapping is not single-valued but instead set-valued, the Banach fixed point theorem can be
extended as follows [14].

Theorem 4.2. Let (X , d) be a non-empty complete metric space, and let T :
X → CB(X ) be a set-valued contraction mapping where CB(X ) := {Y :
Y is a non-empty closed and bounded subset of X} is endowed with the Hausdorff metric induced
by d. Then T has a fixed point x∗ ∈ X such that x∗ ∈ T (x∗).

Proof of Theorem 2.1. Fix sL, sF . For any πL, π′
L ∈ P(SL), let π∗

F ∈ BRF (sF , sL, πL) and π∗′

F ∈
BRF (sF , sL, π

′
L), then

DH(BRL(sL, sF , π
∗
F ),BRL(sL, sF , π

∗′

F )) ≤ dL∥π∗
F − π∗′

F ∥1
≤ dLDH(BRF (sF , sL, πL),BRF (sF , sL, π

′
L)) ≤ dLdF ∥πL − π′

L∥1.

By (set-valued) Banach fixed-point theorem, with 0 ≤ dLdF < 1, there exists a fixed point of BRL.
As a result, there exists an SSE to the game GS .

4.2 Proof of Theorem 2.2 – Error Bound for Projected Boltzmann Policy

Proof. Fix sF , sL. For notation simplicity, We drop the two state arguments in the two BRi mappings.
We let the updates be (i) π̂k

F = projε(π̃F ), and (ii) π̂k+1
L = projε(π̃L) where π̃i = softmaxαi(Q̂

∗,π−i).
Then, at each step k, the following holds:

∥π̂k+1
L − πSE

L ∥1 = DH({π̂k+1
L }, {πSE

L })
≤ DH({π̂k+1

L }, {π̃k+1
L }) +DH({π̃k+1

L },BRL(π̂
k
F )) +DH(BRL(π̂

k
F ), {πSE

L })
≤ ε+ 2|AL|e−αLϕ(ε) + dL∥π̂k

F − πSE
F ∥1,

where we used the closedness of softmax and argmax [9], and the last term can be similarly bounded
as follows:

∥π̂k+1
F − πSSE

F ∥1 ≤ ε+ 2|AF |e−αFϕ(ε) + dF ∥π̂k
L − πSSE

L ∥1.
Combining the two recursive inequalities, we obtain:

∥π̂k+1
L − πSSE

L ∥1 ≤ ε+ 2|AL|e−αLϕ(ε) + dL

(
ε+ 2|AF |e−αFϕ(ε) + dF ∥π̂k

L − πSSE
L ∥1

)
= (1 + dL) ε+ 2|AL|e−αLϕ(ε) + 2dL|AF |e−αFϕ(ε) + dLdF ∥π̂k

L − πSSE
L ∥1.

Unfolding the recursion over k yields:

∥π̂k+1
L − πSSE

L ∥1 ≤
(
(1 + dL)ε+ 2|AL|e−αLϕ(ε) + 2dL|AF |e−αFϕ(ε)

) k∑
κ=0

(dLdF )
κ

+ (dLdF )
k+1∥π̂0

L − πSSE
L ∥1.
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Assuming dLdF < 1, and setting αL = αF = log(1/ε)
ϕ(ε) . At K, the bound is:

∥π̂K
L − πSSE

L ∥1 ≤ (1 + dL)ε+ 2|AL|e−αLϕ(ε) + 2dL|AF |e−αFϕ(ε)

1− dLdF
+ (dLdF )

K∥π̂0
L − πSSE

L ∥1

≤ (1 + dL + 2|AL|+ 2dL|AF |)ε
1− dLdF

+ 2(dLdF )
K ,

where we used the fact that the ℓ1-norm between two distributions over a finite set is bounded by 2.
To achieve 2(dLdF )

K ≤ ε, we need K ≥ logdLdF

(
ε
2

)
, which bounds the error to ∥π̂K

L − πSSE
L ∥1 ≤(

1+dL+2|AL|+2dL|AF |
1−dLdF

+ 1
)
ε = O(ε).

4.3 Regularization

Regularization is widely used in RL to promote stability, enhance exploration, and improve conver-
gence rates [15, 16]. To facilitate the analysis, we define the diameter of the (finite) action space as
the maximum distance between any two actions: diam(Ai) := maxai,a′

i∈Ai
∥ai − a′i∥1. Without

loss of generality, we normalize the action space so that diam(Ai) = 1 for all i ∈ I.
Assumption 4.1 (Lipschitz Reward and Transition Kernel). For each agent i ∈ I, for any states
si ∈ Si, s−i ∈ S−i, and for any actions ai, a′i ∈ Ai, a−i, a

′
−i ∈ A−i, the reward function ri and the

transition kernel Pi satisfy the condition that, there exists dr, dP ≥ 0 such that

|ri(si, s−i, ai, a−i)− ri(si, s−i, a
′
i, a

′
−i)|

≤ dr(∥si − s′i∥1 + ∥s−i − s′−i∥1 + ∥ai − a′i∥1 + ∥a−i − a′−i∥1), (1)

|Pi(si, ai, a−i)− ri(si, a
′
i, a

′
−i)|

≤ dP (∥si − s′i∥1 + ∥s−i − s′−i∥1 + ∥ai − a′i∥1 + ∥a−i − a′−i∥1), (2)

and in addition, we assume γidP /2 ∈ [0, 1].

Now we define the (regularized) best response mapping for each i ∈ I as BRi : Si×S−i×P(A−i) 7→
P(Ai). That is, follows:

BRreg
i (si, s−i, π−i) := argmaxπi

V reg
i (si, s−i, πi, π−i). (3)

Then, the Lipschitz continuity condition can be established:
Theorem 4.3 (Lipschitz Regularized Best Response). Under Assumptions 2.1 and 4.1, the best
response mapping BRreg

i for each agent i ∈ I to GS with regularized reward is Lipschitz with respect
to the other agent’s policy π−i; that is, for any πL, π′

L ∈ P(AL) and πF , π′
F ∈ P(AF ), there exist

constants dreg
L , dreg

F ≥ 0 such that,

∥BRreg
L (sL, sF , πF )− BRreg

L (sL, sF , π
′
F )∥ ≤ dreg

L ∥πF − π′
F ∥, (4)

∥BRreg
F (sF , sL, πL)− BRreg

F (sF , sL, π
′
L)∥ ≤ dreg

F ∥πL − π′
L∥, (5)

where the constants are defined symmetrically in the form of:

dreg
i =

dr
ρ

(
1 +

γi
(1− γi)(1− γidP /2)

+
γidP /2

1− γidP /2

)
, ∀i ∈ I. (6)

We first prove that adding a strongly concave regularization term to the value function can ensure
the uniqueness as well as the continuity of the argmax operator. As the proof is symmetric for both
agents, we drop the agent’s index i for simplicity and use superscript † to denote the opponent’s
components. With a slight abuse of notations, in this proof only, we use s = (s, s†),a = (a, a†) to
represent the joint states and actions, and when necessary, we unpack the argument list. We use π, π†

to indicate the policies to the agent and its opponent, respectively. The regularized reward and value
functions can be re-written concisely as follows:

rreg(s,a) = r(s,a) +H(π), (7)

V reg(s, π, π†) := E

[ ∞∑
t=0

γtrreg(st,at)
∣∣∣s0 = s

]
, (8)

where H is a ρ-strongly concave function. The following lemma is first needed:
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Lemma 4.1. The argmaxπV
reg admits a unique solution.

Proof. We first argue that the expected reward E[r(s,a)] is linear w.r.t. π†. In fact, the linearity is a
direct consequence of the Lebesgue measure by viewing the distribution π† as the measure function.
Then the sum of a linear function and a ρ-strongly concave function preserves the ρ-strong concavity.
Thus, the argmaxπV

reg admits a unique solution.

To proceed with our analysis, we state the following properties of the Fenchel conjugate, established
in Lemma 15 of [17].

Lemma 4.2 (Fenchel Conjugate Properties [17]). Let E = Rm,m ≥ 1 with inner product ⟨·, ·⟩.
Let function g : E 7→ R+ be a differentiable and ρ-strongly convex function with respect to some
norm ∥ · ∥, where R+ = R ∪ {−∞,∞}. Let X be its domain. The Fenchel conjugate g⋆ is
defined as g⋆(y) = maxx∈X⟨x, y⟩ − g(x). Then 3 properties hold: (i) g⋆ is differentiable on E, (ii)
∇g⋆(y) = argmaxx∈X⟨x, y⟩ − g(x), and (iii) g⋆ is 1

ρ -smooth with respect to ∥ · ∥⋆, the dual norm of
∥ · ∥. That is, for any y1, y2 ∈ E, ∥∇g⋆(y1)−∇g⋆(y2)∥ ≤ 1

ρ∥y1 − y2∥⋆.

We need the property of ℓ1-norm of distributions on the set of probability distribution over finite sets.

Lemma 4.3. Suppose that there exists a real-valued function f on a finite set E. For any two
probability distributions ψ1, ψ2, we have∣∣∣ ∑

x∈E

f(x)ψ1(x)−
∑
x∈E

f(x)ψ2(x)
∣∣∣ ≤ maxx∈E f(x)−minx∈E f(x)

2
∥ψ1 − ψ2∥1, (9)

Proof. We first have that
∑

x(ψ1(x) − ψ2(x)) = 0 and hence for any constant c ∈ R, one has∑
x c(ψ1(x) − ψ2(x)) = 0, then

∣∣∣∑x∈E f(x)ψ1(x) −
∑

x∈E f(x)ψ2(x)
∣∣∣ =

∣∣∣∑x∈E(f(x) −

c)(ψ1(x)−ψ2(x))
∣∣∣ ≤ ∑

x∈E |f(x)− c| · |ψ1(x)−ψ2(x)| ≤ maxx∈E |f(x)− c| ·
∑

x∈E |ψ1(x)−
ψ2(x)|. By choosing c = (maxx∈E f(x) + minx∈E f(x)) /2, we get (9).

The proof to Theorem 4.3 is adapted from [18] in which they proved the argmax operator is Lipschitz
continuous with respect to the MF in their MF game setting. Our proof replaces the MF with
opponent’s policy, and we will show that our result matches theirs.

Proof. We first define the opponent-policy averaged reward and transition as follows:

r̄REG†
(s, a, π†) := Ea†∼π† [rreg(s, a, a†)], and P̄ †(s, a, π†) := Ea†∼π† [P (s, a, a†)].

It is easy to show that both r̄REG†
and P̄ † are Lipschitz continuous in π† under Assumption 4.1 with

the same constants dr, dP ≥ 0 respectively. For any π†, π†′ ∈ P(A†),

|r̄REG†
(s, a, π†)− r̄REG†

(s, a, π†′)| =
∣∣∣Ea†∼π† [rreg(s, a, a†)]− Ea†′∼π†′ [rreg(s, a, a†

′
)
∣∣∣

= E(a†,a†′)∼Coupling(π†,π†′)

∣∣∣r(s, a, a†)− r(s, a, a†
′
)
∣∣∣ ≤ E(a†,a†′)∼Coupling(π†,π†′)dr∥a† − a†

′∥1

As this works for any coupling of (π†, π†′), we can pick the optimal coupling that achieves the ℓ1-
Wasserstein distance, defined as W1(π

†, π†′) = infν∈Coupling(π†,π†′)

∫
A†×A† ∥a† − a†

′∥1dν(a†, a†
′
),

in which the infimum can be replaced by minimum when the coupling space is compact. Indeed,
when the action space is discrete and finite in our case, the compactness is guaranteed. Then,

|r̄REG†
(s, a, π†)− r̄REG†

(s, a, π†′)| ≤ drEa∼π[W1(π
†, π†′)] = drW1(π

†, π†′) ≤ dr∥π† − π†′∥1.

The last inequality can be established by noticing that for any optimal coupling νTV that attains
the minimum of the total variance distance, which is defined as dTV(π

†, π†) = νTV(a† ̸= a†
′
) :=

9



infν∈Coupling(π†,π†′) ν(a
† ̸= a†

′
) = 1

2∥π
† − π†′∥1. The following condition must be satisfied with

the assumption that diam(A†) = 1 has been normalized:

W1(π
†, π†′) ≤ E(a†,a†′)∼νTV [∥a† − a†

′∥1]

= νTV(a† = a†
′
)E[∥a† − a†

′∥1 | a† = a†
′
] + νTV(a† ̸= a†

′
)E[∥a† − a†

′∥1 | a† ̸= a†
′
]

≤ diam(A†)νTV(a† ̸= a†
′
) =

1

2
∥π† − π†′∥1 ≤ ∥π† − π†′∥1.

We immediately have that |r̄REG†
(s, a, π†) − r̄REG†

(s, a, π†′)| ≤ dr∥π† − π†′∥1. The proof to P̄ †

being dP -Lipschitz with respect to π† is symmetric. Now we can look at the learning problem.
Since at different rounds, we solve a different RL problem, we are essentially dealing with different
Q-functions. we define

Qπ†
(s, a) = r̄REG†

(s, a, π†) + γ
∑
s′∈S

Q∗,π†
(s′)P̄ †(s′|s, a, π†), (10)

where Q∗,π†
(s) = maxa∈AQ

π†
(s, a) for all s. The next is to prove that Q∗,π†

is dQ-Lipschitz
continuous with respect to the states s, where dQ = dr

1−γdP /2 . Define Tπ† as the Bellman operator

for the problem with π†. We can rewrite Q∗,π†
in the form of Tπ† as follows

Q∗,π†
(s) = max

a∈A

{
r̄REG†

(s, a, π†) + γ
∑
s′∈S

Q∗,π†
(s′)P̄ †(s′|s, a, π†)

}
= Tπ†Q∗,π†

(s), (11)

which is the Bellman optimality condition. It is known that the operator forms a γ-contraction
mapping. Start with any Q, and apply Tπ† , by Banach fixed point theorem, limn→∞ Tn

π†Q→ Q∗,π†
.

Choose the initial Q to be dK-Lipschitz where dK < dr, then Q/dK is 1-Lipschitz. For any s1, s2,
the following holds

|Tπ†Q(s1)− Tπ†Q(s2)| ≤ max
a∈A

{
|r̄REG†

(s1, a, π
†)− r̄REG†

(s2, a, π
†)|

+ γ
∣∣∣ ∑
s′∈S

Q(s′)P̄ †(s′|s1, a, π†)−
∑
s′∈S

Q(s′)P̄ †(s′|s2, a, π†)
∣∣∣}

≤ max
a∈A

{
dr∥s1 − s2∥1 + γdK

∣∣∣ ∑
s′∈S

Q(s′)

dK
P̄ †(s′|s1, a, π†)−

∑
s′∈S

Q(s′)

dK
P̄ †(s′|s2, a, π†)

∣∣∣}
≤

(
dr + γ

dKdP
2

)
∥s1 − s2∥1.

Inductively, we have for all n ≥ 1, it holds that, |Tn
π†Q(s1) − Tn

π†Q(s2)| ≤(
dr

∑n−1
k=0

(
γdP

2

)k

+ dK

(
γdP

2

)n
)
∥s1 − s2∥1 ≤ dr

∑n
k=0

(
γdP

2

)k

∥s1 − s2∥1 ≤ dr

1−γdP /2∥s1 −

s2∥1, where the second inequality is a result of dK < dr, and the third inequality uses the fact that
γdP /2 ∈ [0, 1] with which the geometric series is bounded above. Hence, Tn

π† is dr

1−γdP /2 -continuous

for all n, which holds true when n → ∞, where Tn
π†Q → Q∗,π†

(s). We then set dQ = dr

1−γdP /2

for notation easiness. We now claim that Q∗,π†
is d0-Lipschitz continuous with respect to s, where
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d0 = 1
1−γ

(
dr + γ

dP dQ

2

)
. For any π†

1, π
†
2 ∈ P(A†), we have

∥Q⋆
π†
1

−Q⋆
π†
2

∥∞ = max
s,a

∣∣∣r̄REG†
(s, a, π†

1) + γ
∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
1)

− r̄REG†
(s, a, π†

2)− γ
∑
s′∈S

Q⋆
π†
2

(s′)P̄ †(s′|s, a, π†
2)
∣∣∣

≤ |r̄REG†
(s, a, π†

1)− r̄REG†
(s, a, π†

2)|

+ γ
∣∣∣ ∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
1)−

∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
2)
∣∣∣

+ γ
∣∣∣ ∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
2)−

∑
s′∈S

Q⋆
π†
2

(s′)P̄ †(s′|s, a, π†
2)
∣∣∣

≤ dr∥π†
1 − π†

2∥1 + γ
dP dQ
2

∥π†
1 − π†

2∥1 + γ∥Q⋆
π†
1

−Q⋆
π†
2

∥∞,

where the first term follows the Lipschitz assumption on the reward and the last term uses the fact
that P̄ † is probability. The second term can be bounded as follows. Notice that for any π†, Q∗,π†

is
dQ-Lipschitz continuous implies Q∗,π†

/dQ is 1-Lipschitz continuous with respect to s. Then,∣∣∣ ∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
1)−

∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
2)
∣∣∣

= dQ

∣∣∣ ∑
s′∈S

Q⋆
π†
1

(s′)

dQ
P̄ †(s′|s, a, π†

1)−
∑
s′∈S

Q⋆
π†
1

(s′)

dQ
P̄ †(s′|s, a, π†

2)
∣∣∣

≤ dQ
2
∥P̄ †(s, a, π†

1)− P̄ †(s, a, π†
2)∥1 ≤ dP dQ

2
∥π†

1 − π†
2∥1,

where we use equation (9) and Lipschitz continuity on the transition kernel. Then by rearranging the
terms, we obtain that ∥Q⋆

π†
1

−Q⋆
π†
2

∥∞ ≤ d0∥π†
1 − π†

2∥1 where d0 = 1
1−γ

(
dr + γ

dP dQ

2

)
. Equation

(10) can be rewritten as follows:

Qπ†
(s, a) = r̄REG†

(s, a, π†) + γ
∑
s′∈S

Q∗,π†
(s′)P̄ †(s′|s, a, π†)−H(π) = ⟨qπ†,s, a⟩ −H(π), (12)

where qπ†,s = r̄REG†
(s, ·, π†) + γ

∑
s′∈S Q

∗,π†
(s′)P (s′|s, ·, π†) for any s. We now prove that is(

dr + γd0 + γ
dP dQ

2

)
-Lipschtiz continuous with respect to π†. Indeed, one has

∥qπ†
1,s

− qπ†
2,s

∥∞ = max
a∈A

∣∣∣r̄REG†
(s, a, π†

1) + γ
∑
s′∈S

Q∗,π†
(s′)P̄ †(s′|s, a, π†

1)

− r̄REG†
(s, a, π†

2)− γ
∑
s′∈S

Q∗,π†
(s′)P̄ †(s′|s, a, π†

2)
∣∣∣

≤ dr∥π†
1 − π†

2∥1 + γmax
a∈A

∣∣∣ ∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
1)−

∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
2)
∣∣∣

+ γmax
a∈A

∣∣∣ ∑
s′∈S

Q⋆
π†
1

(s′)P̄ †(s′|s, a, π†
2)−

∑
s′∈S

Q⋆
π†
2

(s′)P̄ †(s′|s, a, π†
2)
∣∣∣

≤ dr∥π†
1 − π†

2∥1 + γ∥Q⋆
π†
1

−Q⋆
π†
2

∥∞ + γ
dP dQ
2

∥π†
1 − π†

2∥1

=
(
dr + γd0 + γ

dP dQ
2

)
∥π†

1 − π†
2∥1.

We now apply Lemma 4.2. For any s ∈ S, we write BRreg(s, π†) = ∇H⋆(qπ†,s) where H⋆ is the
Fenchel conjugate of H . Then,

∥BRreg(s, π†
1)− BRreg(s, π†

2)∥1 ≤ 1

ρ
∥qπ†

1,s
− qπ†

2,s
∥∞ =

dr + γd0 + γdP dQ/2

ρ
∥π†

1 − π†
2∥1.
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The argmax is therefore Lipschitz with constant dr+γd0+γdP dQ/2
ρ . Then by substituting d0, dQ and

bringing back the agent index i, we get

dreg
i =

dr
ρ

(
1 +

γi
(1− γi)(1− γidP /2)

+
γidP /2

1− γidP /2

)
, ∀i ∈ I. (13)

4.4 Stationary Stackelberg Markov Equilibrium with Mean-Field Followers

In this section, we present the proof of Theorem 2.3 and introduce an algorithm that iteratively
computes an SS-MFE.

4.4.1 Assumptions of Theorem 2.3

To establish the existence and uniqueness of an SS-MFE, we adopt the following assumption:
Assumption 4.2 (Uniqueness of Best Response and MF Update). For each agent i ∈ I, for any
si ∈ Si, s−i ∈ S−i, π−i ∈ P(A−i), and for any follower’s MF µF ∈ P(SF ×AF ), agent i’s best
response function BRi(si, s−i, π−i, µF ) admits a unique solution. In addition, the MF update map
Γ(µF , πL, πF ) also returns a unique solution.
Assumption 4.3 (Lipschitz Best Responses). There exist constants dFL , d

µ
L, d

L
F , d

µ
F , d

L
µ , d

F
µ , d

µ
µ ≥ 0

such that for any admissible leader’s policies πL, π′
L ∈ P(AL), the follower’s policies πF , π′

F ∈
P(AF ), and follower’s MF µF , µ

′
F ∈ P(SF ×AF ):

sup
sF ,sL

∥BRF (sF , sL, πL, µF )− BRF (sF , sL, π
′
L, µ

′
F )∥1 ≤ dLF ∥πL − π′

L∥1 + dµF ∥µ− µ′∥1,

(14)

∥Γ(µF , πL, πF )− Γ(µ′
F , π

′
L, π

′
F )∥1 ≤ dµµ∥µF − µ′

F ∥1 + dLµ∥πL − π′
L∥1 + dFµ ∥πF − π′

F ∥1,
(15)

sup
sL,sF

∥BRL(sL, sF , πF , µF )− BRL(sL, sF , π
′
F , µ

′
F )∥1 ≤ dFL∥πF − π′

F ∥1 + dµL∥µ− µ′∥1.

(16)

4.4.2 Proof of Theorem 2.3 – Existence and Uniqueness of SS-MFE under Regularization

Proof. We define the map BRFµ : SF × SL × P(AL) 7→ P(AF )× P(SF ×AF ), which is simply
a composite update map from BRF and Γ; that is, at the outer iteration k, given current states sF , sL
and leader’s policy πk

L, the inner iteration returns BRFµ(sF , sL, π
k
L) = (πk∗

F , µk∗
F ). Fix a leader

policy πL ∈ P(AL) and states sL ∈ SL, sF ∈ SF . We first show that the mapping BRFµ returns
a unique solution by showing that Γ is contractive, then we show that BRFµ forms a contractive
mapping. Consider any pair of follower policies πF , π′

F ∈ P(AF ) and mean-field distributions
µF , µ

′
F ∈ P(SF × AF ) that satisfy πF = BRF (sF , sL, πL, µF ) and π′

F = BRF (sF , sL, πL, µ
′
F ),

we have:

∥Γ(µF , πL, πF )− Γ(µ′
F , π

′
L, π

′
F )∥1 ≤ dµµ∥µF − µ′

F ∥1 + dFµ ∥πF − π′
F ∥1

≤ dµµ∥µF − µ′
F ∥1 + dFµ ∥BRF (sF , sL, πL, µF )− BRF (sF , sL, πL, µ

′
F )∥1

≤ (dµµ + dFµ d
µ
F )∥µF − µ′

F ∥1.

As dµµ + dFµ d
µ
F ∈ [0, 1), Γ forms a contractive mapping by Banach’s fixed point theorem. And since

BRF returns unique solution, we conclude that the follower’s side converges to a unique fixed point.
For any πL, π′

L, let the corresponding follower’s fixed points be (π∗
F , µ

∗
F ) = BRFµ(sF , sL, πL), and

(π∗′

F , µ
∗′

F ) = BRFµ(sF , sL, π
′
L). Then, the following holds:

∥BRFµ(sF , sL, πL)− BRFµ(sF , sL, π
′
L)∥ = ∥π∗

F − π∗′

F ∥1 + ∥µ∗
F − µ∗′

F ∥1
= ∥BRF (sF , sL, πL, µ

∗
F )− BRF (sF , sL, π

′
L, µ

∗′

F )∥1 + ∥Γ(µ∗
F , πL, π

∗
F )− Γ(µ∗′

F , π
′
L, π

∗′

F )∥1
≤ (dLF + dLµ)∥πL − π′

L∥1 + (dµF + dµµ)∥µ∗
F − µ∗′

F ∥1 + dFµ ∥π∗
F − π∗′

F ∥1

≤ (dLF + dLµ)∥πL − π′
L∥1 + (dµF + dµµ + dFµ )

(
∥π∗

F − π∗′

F ∥1 + ∥µ∗
F − µ∗′

F ∥1
)
.
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By rearranging the term, we get

∥BRFµ(sF , sL, πL)− BRFµ(sF , sL, π
′
L)∥1 = ∥π∗

F − π∗′

F ∥1 + ∥µ∗
F − µ∗′

F ∥1

≤
dLF + dLµ

1− (dµF + dµµ + dFµ )
∥πL − π′

L∥1.

Finally, the leader’s best response satisfies the following:

∥BRL(·, π∗
F , µ

∗
F )− BRL(·, π∗′

F , µ
∗′

F )∥1 ≤ dFL∥π∗
F − π∗′

F ∥1 + dµL∥µ
∗ − µ∗′

∥1

≤
dLF + dLµ

1− (dµF + dµµ + dFµ )
max{dFL , d

µ
L}∥πL − π′

L∥1.

Because
dL
F+dL

µ

1−(dµ
F+dµ

µ+dF
µ )

max{dFL , d
µ
L} ∈ [0, 1), BRL forms a contractive mapping by Banach’s fixed

point theorem. As a result, there exists a unqiue SS-MFE to GMF.

4.4.3 Algorithm 1 – RL-Framework for Finding an SS-MFE

We now present a RL procedure for computing an SS-MFE. At each outer iteration, the leader updates
its policy based on the aggregate follower response, while the inner loop computes the consistent
mean-field and best response for the followers. The complete procedure is outlined below.

Algorithm 1: An RL to Single-Leader-MF-Follower Stackelberg Games

Input: Initial states s0L, s
0
F , leader’s policy π0

L, initial follower’s MF µ0
F , tolerance tol, RL

algorithms AlgL, AlgF
for Iteration k = 0, 1, 2, · · · do

Leader takes action akL ∼ πk
L(·|skL) ;

Set µk,0
F = µk

F ;
for Iteration τ = 0, 1, 2, · · · do

Follower learns its best response policy πk,τ
F = BRF (s

k
F , s

k
L, π

k
L, µ

k,τ
F ) through AlgF ;

Follower’s MF updates as µk,τ+1
F = Γ(µk,τ

F , πk
L, π

k,τ
F ) ;

If ∥µk,τ+1
F − µk,τ

F ∥1 ≤ tol, set (πk
F , µ

k
F ) = (πk,τ

F , µk,τ
F ) and exit the inner loop.

end
Follower takes action akF ∼ πk

F (·|skF ) ;
Leader learns its best response policy πk+1

L = BRL(s
k
L, s

k
F , π

k
F , µ

k
F ) through AlgL ;

State transition sk+1
L ∼ PL(s

k
L, a

k
L, a

k
F , µ

k
F ), s

k+1
F ∼ PF (s

k
F , a

k
F , a

k
L, µ

k
F ) ;

If ∥πk+1
L − πk

L∥1 ≤ tol, exit the outer loop.
end
Return (πSE

L , πSE
F , µSE

F ) = (πk
L, π

k
F , µ

k
F ) as the SS-MFE.

4.5 Numerical Experiment Specification and Results

4.5.1 Input Data and Hyper-parameters

Our numerical simulation’s data and code can be found at https://anonymous.4open.science/
r/StackelbergGame-B592 and also in the supplemental materials. To reproduce our results,
we require Python 3.10.11. All necessary packages are included in the requirement.txt file.
The main packages used are: Gymnasium (version 1.0.0, [19]) for environment setting; Stable-
Baselines3 (version 2.3.2, [20]) for RL; and Pyomo (version 6.7.2, [21, 22]) for solving the economic
dispatch linear programming problem. We use a stylized 3-bus power system as the test case. The
input specifications for the bus nodes (including demographic data of prosumers and consumers),
transmission lines, and grid-level generators are provided in Tables 1, 2, and 3, respectively. The
numerical experiment uses PPO as the RL algorithm. The training specification is listed in Table 4.
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Table 1: Bus Node Data

Bus Node Name
Parameter b1 b2 b3
P Load (kW) 110.0 110.0 95.0
Q Load (kVar) 40.0 40.0 50.0
Max Voltage (p.u.) 1.1 1.1 1.1
Min Voltage (p.u.) 0.9 0.9 0.9
Voltage Magnitude 1.1 0.92617 0.9
Voltage Angle 0.0 7.25883 -17.2671
Base KV 345 345 345
Prosumer Population 1,000 500 300
Energy Storage Capacity (kWh) 30 60 100
Energy Storage One-way Efficiency 0.8 0.8 0.8
Prosumer Income/household (US$) 25,000 45,000 65,000
Consumer Population 3,000 3,000 3,000
Consumer Income/household (US$) 15,000 15,000 15,000

Table 2: Transmission Line Data

Transmission Line Name
Parameter l1 l2 l3
Source Bus b1 b3 b1
Target Bus b3 b2 b2
Reactance (Ω) 0.065 0.025 0.042
Susceptance (S) 0.62 0.75 0.9
Normal Flow Limit (MW) 100 100 100

Table 3: Grid-Level Generator Data

Grid-Level Generator Name
Parameter g1 g2 solar solar2
Bus b1 b2 b3 b1
Fuel Type Oil Oil Solar Solar
Cost Curve Coefficients∗ [0.2, 5.0, 0.0] [0.2, 4.0, 0.0] Free Free
Max Production (MW) 2000.0 1500.0 30.0 30.0

∗ The cost curve is represented as an array, where the first entry is the quadratic coefficient, the second is the linear
coefficient, and the third is the constant term. For an array [a, b, c], the cost function is C(p) = ap2 + bp+ c,
where p is amount of energy consumption in MWh.

Table 4: Hyper-parameters for PPO Agents

Hyperparameter Aggregators Utility Company
Learning Rate 0.0003 0.0003
Discount Factor (γ) 0.9999 0.9999
Entropy Coefficient 0.01 0.01
Batch Size 128 128
Number of Epochs 10 10
Steps per Update 1200 1200
Clip Range 0.2 0.2
Policy Network † [18, 36] [24, 36]
Value Network ◦ [18, 36] [24, 36]
Training length 2000 2000

†,◦ All policy and value networks are fully connected neural networks. Each array lists the number of neurons at
each hidden layer.
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4.5.2 Input Data of Solar and Demand Shapes

We set each day to be of 8 time steps, each of which represents a 3-hour interval. Figure 3 shows the
input solar capacity shape from [23] and energy demand shapes for both prosumers and consumers
at each timestep adapted from [24]. Let ∆(a, b, c) denote a triangular distribution with lower limit
a, upper limit b, and mode c. In our simulation, we assume each consumer/prosumer’s demand and
solar profile follow the average shapes shown in Figure 3, scaled by a random factor drawn from
the triangular distribution ∆(0.8, 1.2, 1). This introduces variability across agents while preserving
the overall profile shape. All data is scaled relative to the average individual storage capacity across
all prosumers and consumers, computed using Table 1. We assume each consumer has a reference
storage capacity of 10kWh. The demand input shows the energy consumed in each time step. The
shapes show the total consumption for consumers, and net demand after subtracting their solar
generation for prosumers.
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Figure 3: Input shapes for solar capacity shape (left, data adapted from [23]) and load demand shapes
for prosumers and consumers (right, data adapted from [24]). All data is scaled to be with respect to
the average storage capacity. The shadow areas indicate the noise bound of each shape.

4.5.3 Follower’s Learning Result – Price Volatility and Prosumer Net Demand Shape

To better measure the impacts of energy storage coupled with the RL algorithms on locational marginal
price (LMP) volatility, we adopt incremental mean volatility (IMV) from [25] as the metric. For a
sequence of LMPs {LMPt}∞t=1, the IMV is defined as IMV = limT→∞

1
T

∑T
t=1

∣∣∣LMPt+1 −LMPt

∣∣∣.
Figure 4 shows the IMV of the last 3 days between the two scenarios: with storage and RL, and
without storage or RL. Results indicate that the scenario with storage and RL achieves a significant
reduction in IMV, approximately 3 units lower, highlighting notably less volatile and more stable
electricity prices.
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Figure 4: Comparison of IMV of the last 3 days between two scenarios: with storage and RL, and
without storage or RL. Shadow areas show the 1-sigma error bounds across all simulations.

To further understand how RL influences consumption behavior, we examine the resulting net demand
profiles and compare them to the original input demand. As shown in Figure 5, the RL-based strategy
significantly reshapes prosumer net demand. It shifts a considerable portion of energy consumption
(charging) toward midday, as a response to low electricity prices and abundant solar generation. The
net demand turns negative during peak evening hours, indicating energy selling back to the grid when
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prices are high. The curve after learning is less smooth due to the existence of cost-free grid-level
solar generators, prosumers can increase their consumption without increasing the price too much.
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Figure 5: The vertical axis indicates the energy amount scaled down by a factor of the total storage
level of the corresponding agent types (prosumers or consumers). The shaded areas indicate one
standard deviation error bounds computed over all 10 days and all simulation runs.

4.5.4 Leader’s Learning Result - Energy Expenditure Incidence (EEI)

The EEI for both prosumers and consumers is shown in Figure 6. Under our experimental setup,
the utility company’s optimal strategy reduces the EEI gap between prosumers and consumers from
approximately 1% to about 0.7%, indicating improved equity across different income groups and
customer types. We note that the EEI values are typically small since energy spending constitutes
only a minor portion of total household income [26].
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Figure 6: EEI over time for prosumers and consumers. The learned policy reduces the EEI gap
between the two groups, indicating improved income-based equity. Shaded regions represent one
standard deviation across simulation runs.
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