Learning in Stackelberg Markov Games

Jun He Andrew L. Liu
Edwardson School of Industrial Engineering ~ Edwardson School of Industrial Engineering
Purdue University Purdue University
West Lafayette, IN 47906 West Lafayette, IN 47906
he184@purdue.edu andrewliu@purdue.edu
Yihsu Chen

Electrical and Computer Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064
yihsuchen@ucsc.edu

Abstract

This paper studies a general framework for learning Stackelberg equilibria in dy-
namic and uncertain environments, where a single leader interacts with a population
of adaptive followers. Motivated by equitable electricity rate design for customers
with distributed energy resources, we formalize a class of Stackelberg Markov
games and establish the learning framework for stationary equilibrium. We extend
the framework to incorporate a continuum of agents via mean-field (MF) approxi-
mation. We validate the framework on an energy market, where a utility company
sets electricity rates for a large population of households. Our results show that
learned policies can achieve economic efficiency, equity across income groups,
and stability in energy systems, while also encouraging renewable adoption and
reducing reliance on fossil-fuel generation to mitigate climate change.

1 Introduction

Many real-world scenarios can be modeled as Stackelberg games, where a leader first commits to
a strategy and followers respond rationally based on the leader’s choice. Classical approaches to
solving Stackelberg games often require explicit models of the follower’s objective and best-response
behavior, often through bilevel optimization techniques [1]]. As a result, such methods are limited
to stylized, static environments. In contrast, many policy design problems involve dynamic and
stochastic environments, where agents adapt to the evolving system and the leader must learn a policy
that effectively shapes long-run outcomes.

Recent advances in multi-agent reinforcement learning (RL) have opened up new possibilities for
mechanism design. The Al Economist framework [2] exemplifies this by introducing a two-level
RL approach, where one planner leader and economic followers co-adapt in a complex economic
simulation. Theoretical work has also been done for learning Stackelberg equilibria, such as sample
complexity under bandit feedback [3l], local convergence of gradient-based dynamics [4], and
Stackelberg-Nash equilibria with myopic followers [3].

We propose a general learning framework for Stackelberg Markov games with infinite-horizon dis-
counted rewards. We first study the two-agent setting, and then extend the framework to incorporate
a continuum of followers via MF approximation. To compute equilibria, we introduce a RL algo-
rithm that alternates between follower and leader best-response learning, without requiring explicit
knowledge of the follower’s reward function. By focusing on equitable electricity rate design, our
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framework promotes solar PV and storage adoption without disproportionately burdening households
who cannot afford such technologies. In turn, widespread adoption of renewables reduces dependence
on fossil-fuel generation, contributing directly to climate change mitigation.

2 The Learning Framework for Stackelberg Markov Games

A Stackelberg game is a sequential-move game in which one agent (leader) commits to a strategy
first, anticipating the other’s response, and the second agent (follower) selects the best response
after observing this commitment. We study Stackelberg interactions embedded in an infinite-horizon
discounted Markov games. Notation-wise, let Z = {L, F'} denote the index for leader and follower,
respectively. We write —¢ as the opponent of ¢; that is, if ¢ = L then —¢ = F’, and vice versa. For any
sets X', Y, we use X' x ) denotes the Cartesian product, | X| the cardinality if discrete, and P(X’) the
probability measure over measurable X'. We let = ~ Q indicate that x follows distribution Q.

2.1 The Single-Leader-Single-Follower Game

The definition of a Stackelberg Markov game is given below.

Definition 2.1. A Stackelberg Markov game with a single leader and a single follower is a tuple
Gs := ({Sl, A, R, i, }iez), where S; is a (measurable) state spaces, and A; is the action space
of agent 7. Agent ¢’s stochastic transition kernel P;(s;, a;, a_;) defines the probability distribution
over next states, given current state s; and joint actions (al, a_;). The reward functions r; : S; X
S_i x A; x A_; — R specify agent i’s one-step payoff, and 7; € [0, 1) denotes its discount factor.

In this paper, we focus on the case in which §; and A; are discrete and fi-
nite. Each agent’s value function is defined as the discounted total expected return as
Vi(siys—i,m,m—i) = E [Z?io VEri(Sity S—it, @i, G—it) | Sio = SisS—i0 = S—;| subject to
Sig41 ~ Pi(si,ai,a-4),a;1 ~ mi(-|si). Provided that the other player chooses m_;, the goal
for agent 7 is to find the best policy 7} that maximizes its value function starting with s; € S; such
that Vi (s, s, wf,m—i) > Vi(ss, S—i, mi, m—;), Vm;. For each agent i, at state s;, given the oppo-
nent’s policy m_; and state s_;, the agent treats the opponent as part of the environment and solves
a single-agent MDP to compute an optimal response 7. This defines the best response mapping
BR; : §; xS_i x P(A_;) = P(A;) with which BR; (s, s, m_;) := argmax, V;(s;, s 7, 7).
For notation brevity, we omit the two state arguments and write BR;(7_;) to denote the best response
mappings. To facilitate the analysis of optimal stationary (i.e., time-invariant, memoryless) poli-
cies [6l [7] policies, we introduce the following assumption, and define the stationary Stackelberg
equilibrium (SSE) in the game Gg.

Assumption 2.1. There exists a finite R > 0 such that |r;(s;, s—;, a;,a—;)| < R,Vs;,a;,a_;,1 € L.

Definition 2.2. A policy pair (73°F, m3°F) in G is an SSE if, for any states sy, s, it satisfies that

the leader finds the optimal policy 755¢ € BR,(BRp (7). As aresult, m3°F € BRp(755E).

We now establish the existence and uniqueness of an SSE, which requires the following assumption:
Assumption 2.2. For each agent ¢, there exist constants d; > O such that fo any policies
iy, € P(A_;), one has Dy (BR; (84, 5—i, m—;) —BR (84, 54, 7)) < d;i||m—; — 7", |1, where
Dy (A, B) := max {sup,c 4 infrep [|a — b|[1,sup,c g infaca [la — b|| } is the Hausdorff distance
to measure the distance between two nonempty sets A, B C II,, Vi € Z, endorsed by ¢;-metric || - ||;.

Theorem 2.1. Given Assumptions2.1)and[2.2) when drdp < 1, there exists an SSE to Gs.

2.2 General RL Framework

We now introduce a general RL framework for computing an SSE. At each round k, we first

ﬁx the leader’s policy 7%, and compute the following until 7rk+1 = 7k for some k > 0: (i)

* € BRp (%), and (ii) 75" € BRy (7%*). To implement this procedure in an RL setting, we

let si = (si,5-i,a_;) and P = (P, P,Z-, _i), and define the Q-function as Q""" ~*(s;, a;) =

E >0 viri(sie, ait) ‘ Si,0 = Si, Qi 0 = a,-} , and optimal Q-function satisfies the Bellman equation
for agent i given m_; as Q" ! i Q5

this general approach does not guarantee convergence unless the best-response mapping satisfies

(si,a:) = ri(si, a;) +vimaxy B op, [Q;7 (s}, a] )} However,



strong regularity conditions such as Lipschitz continuity. The first approach is to use Boltzmann

policy, which uses the softmax operator: ; := softmaxq, (-|si) = = ex;((;aQQ*;_(s (S)L)) Vi e,

with hyperparameter «; > 0. It has been proved in [8] that softmax is Lipschitz continuous.

Following [9]], we use a finite e-nets to bound the approximation error to the argmax operator.

That is, for a given policy m;, we define a finite cover Nf = {ﬁi(l), ﬁi(2), e ,Tfi(N" )} C P(A;)

such that for any 7;, there exists 7; € NF with ||m; — 7;||1 < e. The projection of 7; onto

the net is defined as proj_(7;) := argmin_, e ||m; — 7;|l1. We also define the action gap at s;
() () £ 0)

as s, (Q*’”Ji) := min () (maxa<€Ai Q*’”f]i (si,al) — Q" T3 (84, ai)), for all

) a;€A; \argmaxQ ™" —i (s;,-) ¢

j=1,---, NE. Then, for any £ > 0, there exists a positive function ¢(¢) and an e-net NF such that
() +() . -

for all Q*"’rfji and at any state s;, s, (Q*’”fi) > ¢(e). Specifically, for k = 0,1,. . ., the policies are

"1 — proj_ (softmax,,, (Q*”)}))
Theorem 2.2. Let assumption hold, and suppose that d;drp < 1. Fix e > 0 and set oy, =
ar = log(1/e)/¢(e). Let (7% 7%) denote the policy iterates using projected Boltzmann policies
with e-net. Then, for any K > 10g; (4, 4,.1(2/€), the leader’s policy satisfies |7E — 73SE||; <

1+d+2|AL[+2dL | AF|
( 1—drdp + 1

now updated as: A%, = proj_(softmax,,,. (Q”"T2 )) and 7}

= O(e), where m5°F denotes the leader’s SSE policy in Gs.

This bound shows that it can closely approximate the true best response, while preserving Lipschitz
continuity. The second approach is to add a regularization term to the reward function, which is
widely used in RL. We then analyze the game using the regularized value function for for each s;

reg _ _
such that V (Si,S_ifTri,ﬂ'_i) =E Zt 0% i (Sl ty S—ity Bty A—j t)’SLO = 8i5,5—i,0 = S—i|>»

where 7 % (84, S, @iy a—;) = 14(84, 5_i, ai,a—;) + H(m;(- | s;)), and H(-) is a p-strongly concave

function. In Theorem .3] (Appendix {.3), we show that under standard continuity and boundedness
conditions, the policy iterates converge to a fixed point under the regularized learning dynamics.

2.3 Extension to Stackelberg Games with MF Followers under Regularization

We now consider the extension where there is one leader but an infinite number of followers.
To formalize this setting, we adopt a MF approach in which followers are modeled as homo-
geneous and interchangeable. In the limit as the number of followers approaches infinity, each
individual has negligible influence on the aggregate behavior, which is captured by an MF dis-
tribution over states and actions. We can then focus on the interaction of a single representative
follower responding to the MF. For notational consistency, we retain the index set Z = {L, F'}.
Let pup: € P(Sp x Ap) denote an MF distribution at time ¢, representing the joint distribu-

tion of the population’s states and actions in the infinite-agent limit, defined as pp(s,a) =
N .

. j=1,j#i (sF 407 )=(s,a) .

lIImpy o0 S ,Vs € Sp,a € Ap, where N is the number of followers, and

(sjl;ﬂyt, a{p_’t) denotes the j-th follower’s state and action pair. The indicator function 1, ) = 1if the
condition is true and O if false. Each agent’s value function is redefined with the addition MF argument:
Vi(si,s—i,mi, m_j, pr) = E [Zt 0 Vi (sies S—its g t,aﬂt,up)‘szo = 8;,5_40 = S—;|, sub-
ject to s; 411 ~ Pi(si,ai,a-i,p1r),air ~ m(:|sit, pr),Vi € Z. Finally, the evolution
of MF is a mapping I' : P(Sp x Ap) X St x S — P(Sp x Ap), defined as pfp :=
D(pup, 7L, 7p),Yup, 7, 7F, as a new component to the game. The stationary Stackelberg MF
equilibrium (SS-MFE) is defined as follows:

Definition 2.3. In a Stackelberg Markov game with MF followers, the tuple (73E, 75F, 1i5E) forms

an SS-MFE, if for any s, sp: () Vr(sr, sp, T, T30, p58) > Vp(sp, Sp, T, o0 ,MF) Vg, (ii)

p5E =T (uSE, 738, 73F), and (iii) VL (sp, sp, T30, mo0, u35) > Vi(sp, sp, mr, Mo, p5e), V.

2.4 Learning Framework for SS-MFE

We re-define the best response mappings with the introduction of the MF: BR; : §; x S_; X
P(A_;) x P(Sp x Ar) — P(A;) for both i € Z. Then, at each iteration k, given the leader’s policy
7% , the follower and MF dynamics proceed through an inner loop with iterator 7 = 0,1, - - -, and



k,7+1 k k,7 k,o+1 k, 7 _k k,7+1 . k k
g = BRp(sp,sL, 7}, up' ), WF = D(pg", 75, 7%""") until convergence to (7, uh).

The leader then updates its policy as 75 ™' = BRy (s, sp, ", ).
Theorem 2.3. Under the same assumptions for Theorem there exists a unique stationary SS-MFE

_ditdy max{df d}} <1
1—(dp+d+dE) L>™L ’

under regularization to Gy if dﬁ + df d‘} < 1and
where the d’s are Lipschitz constants defined in assumptions in appendix. The pseudocode for a
general RL-based algorithm to solving the game is provided in Algorithm[I]in appendix.

3 Numerical Experiment

We apply our framework to a real-world electricity tariff design, motivated by the growing adoption
of distributed energy resources (DERs), such as rooftop solar and battery storage. As higher-income
households invest in DERs, they reduce grid dependence or export energy for profit, thereby lowering
their net payments to the utility. Lower-income households, who are less likely to afford DERs,
continue to rely on the grid and bear a disproportionate share of the infrastructure costs. This dynamic
exacerbates energy inequity and raises serious concerns [10], described as the risk of a utility death
spiral. We adopt the same test case and settings as in [10, [11]. The power network we consider
consists of a 3-node grid with 4 generators and 3 transmission lines. The utility (leader) learns
a pricing policy for per-kWh charges and fixed charges to recover maintenance costs, aiming to
minimize inequality in energy expenditure incidence (EEI), defined as the percentage of household
income spent on electricity. On the follower side, each node hosts 3,000 consumers with income
$15,000. The prosumers (who can produce and consume electricity) population varies by node: 1000
low-income ($25,000), 500 middle-income ($45,000), and 300 high-income ($65,000) at Nodes 1,
2 and 3, respectively. We model 3 aggregators, each representing a node in the grid and managing
a population of both prosumers and consumers. Each learns charging/discharging policies for its
prosumers’ solar and storage systems, and responds to both the utility’s policy and real-time locational
marginal prices (LMPs) determined by a system operator via economic dispatch. We use PPO [12]
and set each simulated day to 8 time steps (3-hour intervals). The utility updates every 3 days, while
aggregators update at every time step. The simulation runs for 100 days over 5 random seeds. Figure/[I]
compares wholesale prices at the start and end of training, with and without RL. Under RL, price
volatility reduces significantly, and daily patterns stabilize. Figure [2 shows the learned per-kWh
add-on rates and fixed charges. Over time, the utility’s policy converges to a pricing structure in
which higher-income groups have higher fixed charges, helping align payment responsibility with
ability to pay and maintain energy equity. More results are shown in Appendix
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Figure 1: Comparison of nodal prices with and without learning. RL reduces price volatility and
leads to more stable daily patterns.
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Figure 2: Learned buy/sell rates (left), fixed charges for prosumers (middle), and consumers (right).



References

[1] S. Dempe and A. Zemkoho, “Bilevel optimization,” in Springer Optimization and Its Applica-
tions. Springer, 2020, vol. 161.

[2] S. Zheng, A. Trott, S. Srinivasa, D. Parkes, and R. Socher, “The Al economist: Improving
equality and productivity with Al-driven tax policies,” Science Advances, vol. 8, no. 24, p.
eabm1799, 2022.

[3] Y. Bai, C. Jin, H. Wang, and C. Xiong, “Sample-efficient learning of Stackelberg equilibria in
general-sum games,” in Advances in Neural Information Processing Systems (NeurIPS), 2021.

[4] T. Fiez, B. Chasnov, and L. J. Ratliff, “Convergence of learning dynamics in Stackelberg games,”
arXiv preprint arXiv:1906.01217, 2020.

[5] H. Zhong, Z. Yang, Z. Wang, and M. L. Jordan, “Can reinforcement learning find Stackelberg-
Nash equilibria in general-sum markov games with myopically rational followers?” Journal of
Machine Learning Research, vol. 24, no. 48, pp. 1-52, 2023.

[6] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, ser.
Wiley Series in Probability and Statistics. Wiley, 2014.

[7] A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun, “Reinforcement learning: Theory and
algorithms,” CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, vol. 32, p. 96, 2019.

[8] B. Gao and L. Pavel, “On the properties of the softmax function with application in game theory
and reinforcement learning,” arXiv preprint arXiv:1704.00805, 2017.

[9] X. Guo, A. Hu, R. Xu, and J. Zhang, “A general framework for learning mean-field games,”
Math. Oper. Res., vol. 48, no. 2, p. 656-686, May 2023.

[10] Y. Chen, A. L. Liu, M. Tanaka, and R. Takashima, “Optimal retail tariff design with prosumers:
Pursuing equity at the expenses of economic efficiencies?” IEEE Transactions on Energy
Markets, Policy and Regulation, vol. 1, no. 3, pp. 198-210, 2023.

[11] J. He and A. L. Liu, “Evaluating the impact of multiple DER aggregators on wholesale energy
markets: A hybrid mean field approach,” arXiv preprint arXiv:2409.00107, 2024.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[13] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales,” Fundamenta Mathematicae, vol. 3, no. 1, pp. 133—181, 1922. [Online]. Available:
http://eudml.org/doc/213289

[14] S. B. Nadler Jr, “Multi-valued contraction mappings,” Pacific Journal of Mathematics, vol. 30,
pp- 475-488, 1969.

[15] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global convergence of natural policy
gradient methods with entropy regularization,” Operations Research, vol. 70, no. 4, pp. 2563—
2578, 2022.

[16] G. Neu, A. Jonsson, and V. Gémez, “A unified view of entropy-regularized Markov decision
processes,” arXiv preprint arXiv:1705.07798, 2017.

[17] S. Shalev-Shwartz, “Online learning: Theory, algorithms, and applications,” Ph.D. thesis, The
Hebrew University of Jerusalem, 08 2007.

[18] B. Anahtarci, C. D. Kariksiz, and N. Saldi, “Q-learning in regularized mean-field games,”
Dynamic Games and Applications, vol. 13, no. 1, pp. 89-117, 2023.

[19] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. D. Cola, T. Deleu, M. Gouldo,
A. Kallinteris, M. Krimmel, A. KG, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, H. Tan,
and O. G. Younis, “Gymnasium: A standard interface for reinforcement learning environments,”
2024. [Online]. Available: https://arxiv.org/abs/2407.17032

[20] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3:
Reliable reinforcement learning implementations,” Journal of Machine Learning Research,
vol. 22, no. 268, pp. 1-8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html

[21] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and solving mathematical
programs in python,” Mathematical Programming Computation, vol. 3, no. 3, pp. 219-260,
2011.


http://eudml.org/doc/213289
https://arxiv.org/abs/2407.17032
http://jmlr.org/papers/v22/20-1364.html

[22] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D. Siirola, J.-P.
Watson, and D. L. Woodruff, Pyomo—optimization modeling in python, 3rd ed. ~ Springer
Science & Business Media, 2021, vol. 67.

[23] A. Robinson, “Solar PV Analysis of Honolulu, United States,” 2024. [Online]. Available:
https://profilesolar.com/locations/United- States/Honolulu/

[24] Hawaiian Electric, “Power facts,” 3 2024. [Online]. Available: https://www.hawaiianelectric|
com/about-us/power-facts

[25] M. Roozbehani, M. A. Dahleh, and S. K. Mitter, “Volatility of power grids under real-time
pricing,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 1926-1940, 2012.

[26] EIA, “Residential energy consumption survey 2015, |https://www.eia.gov/consumption/
residential/data/2020/.


https://profilesolar.com/locations/United-States/Honolulu/
https://www.hawaiianelectric.com/about-us/power-facts
https://www.hawaiianelectric.com/about-us/power-facts
 https://www.eia.gov/consumption/residential/data/2020/
 https://www.eia.gov/consumption/residential/data/2020/

4 Technical Appendices and Supplementary Material

4.1 Proof of Theorem 2.1]- Existence of an SSE
The proof relies on the well-known Banach fixed point theorem, for which we first restate the
definition of a contraction mapping. In our work, we choose the distance function to be the ¢;-norm.

Definition 4.1. Let (X, d) be a non-empty complete metric space, where d is a metric on X'. A
map 7' : X — X is called a contraction mapping on X if for any =,y € X, there exists a constant
¢ € [0,1) such that d(T'(z), T(y)) < cd(z,y).

The Banach fixed point theorem [[13]] is stated as follows.

Theorem 4.1. Let (X, d) be a non-empty complete metric space, and T : X — X be a contraction
mapping. Then T admits a unique fixed point x* € X such that T(x*) = z*.

When the mapping is not single-valued but instead set-valued, the Banach fixed point theorem can be
extended as follows [14].

Theorem 4.2. Let (X,d) be a non-empty complete metric space, and let T

X — CB(X) be a set-valued contraction mapping where CB(X) := {)Y

Y is a non-empty closed and bounded subset of X } is endowed with the Hausdorff metric mduced
by d. Then T has a fixed point x* € X such that x* € T'(x*).

Proof of Theorem2.1} Fix sp,,sp. Forany 7p,, 77 € P(S), let 7 € BRp(sp, sp,7r) and ﬂ'}}/ S
BRp(sp,sL, 7)), then

Dy (BRL(sL,8F,75),BRL(sL, 87, 75)) < di||7mp — TR |1
S dLDH(BRF(SF,SL,7TL)7BRF(SF, SL,7I'/L)) § deFH’lTL — 7T/L||1.

By (set-valued) Banach fixed-point theorem, with 0 < dydr < 1, there exists a fixed point of BRy,.
As a result, there exists an SSE to the game Gg. O

4.2 Proof of Theorem 2.2]— Error Bound for Projected Boltzmann Policy

Proof. Fix s, sr. For notation simplicity, We drop the two state arguments in the two BR; mappings.
We let the updates be (i) 7% = proj_(7x), and (i) 75 ™' = proj_ (71 ) where 7; = softmax,, (Q* 7).
Then, at each step k, the following holds:

75T — 7Bl = Da({#7 T}, {=3F})
< Dup({ay T AFETY) + Du ({77, BRL(7F)) + D (BRL(7%), {7$F})
<e+2lAple @) L dp |7k — 75|y,

where we used the closedness of softmax and argmax [9]], and the last term can be similarly bounded
as follows:

75"t = 7Bl < e+ 2l Aple” ¥ + dp|af - 7).

Combining the two recursive inequalities, we obtain:

IFEF = w8l < e+ 2 Apfe™ 9O 4 dy (< 4+ 21 Arle™ " + dpl, =i )

= (1+dp)e+2/ALle %) 4 2d |Ap|e ) + dpdp ||k — 7358
Unfolding the recursion over k yields:
k
||Ak+1 iSE”1 < ((1 +dL)€+2|.AL|€7aL¢(E) +2dL|AF|e*OtF¢(€ ) Z (drdp)”
k=0

+ (dpdp) &Y — w35 |-



Assuming d;dp < 1, and setting oy, = ap = log(1/e) ~A¢ K, the bound is:

é(e)
(1 + dL)E + 2|AL|e*aL¢>(s) + QdL|AF|efap¢(s)
7 = mi "l < 1 —dpdp + (dpdp)¥ |77 — 725
1 2 2
< (1+dp, +2|AL| + 2d.| Ap|)e Adydr)¥
1—dpdrp

where we used the fact that the ¢;-norm between two distributions over a finite set is bounded by 2.
To achieve 2(ddp)X < e, we need K > log, 4. (%), which bounds the error to |75 — m35E||; <

(1+dL+2|AL\+2dL\AF\ 4 1) = O(e). -

1—drdp

4.3 Regularization

Regularization is widely used in RL to promote stability, enhance exploration, and improve conver-
gence rates [[15,[16]]. To facilitate the analysis, we define the diameter of the (finite) action space as
the maximum distance between any two actions: diam(A;) := max,, a4, [[a; — a;l[1. Without
loss of generality, we normalize the action space so that diam(A;) = 1 forall ¢ € Z.

Assumption 4.1 (Lipschitz Reward and Transition Kernel). For each agent i € Z, for any states
s; € i, s—; € S_;, and for any actions a;, a} € A;,a_;,a’_; € A_;, the reward function r; and the
transition kernel P; satisfy the condition that, there exists d,., dp > 0 such that

|7'i(3ia sz'wh',afi) - Ti(Si,S—iaagaaLM

< do(|[si = silly + lls—i = s"illi + llai = ailly + la—i — a’;[1), )]
|Pi(sia ai7a—i) - Ti(sha/iaa/—i)'
<dp(llsi = silly + ls—i = s";lls + llai — ailly + lla—i — a’;[1), (2)

and in addition, we assume v;dp/2 € [0, 1].

Now we define the (regularized) best response mapping for eachi € Z as BR; : §; xS_; xP(A_;) —
P(A;). That is, follows:

BR® (81,54, m_;) := argmax, V; ¥ (si, s i, i, m_3). 3)

Then, the Lipschitz continuity condition can be established:

Theorem 4.3 (Lipschitz Regularized Best Response). Under Assumptions [2.1] and the best
response mapping BR'® for each agent i € T to Gs with regularized reward is Lipschitz with respect
to the other agent’s policy w_;; that is, for any wp, 7y € P(Ay) and wp, 7 € P(Ap), there exist
constants d;*, d > 0 such that,

IBR ®(sL,5r,mr) — BR;* (s, s, 7p)|| < df¥|lnp — 75|, “)
IBR: (sr, 51, 71) — BRE (sp, sp, mp) || < difllmn — w 6]

where the constants are defined symmetrically in the form of:

d, Vi vidp /2 .
d? = (1+ + ),vz €T 6
C e T T e T T e 2 ©

We first prove that adding a strongly concave regularization term to the value function can ensure
the uniqueness as well as the continuity of the argmax operator. As the proof is symmetric for both
agents, we drop the agent’s index 7 for simplicity and use superscript T to denote the opponent’s
components. With a slight abuse of notations, in this proof only, we use s = (s,s'),a = (a,a’) to
represent the joint states and actions, and when necessary, we unpack the argument list. We use 7, 7'
to indicate the policies to the agent and its opponent, respectively. The regularized reward and value
functions can be re-written concisely as follows:

r’¢(s,a) = r(s,a) + H(n), @)

t,.re
E”Y (s, a¢)

where H is a p-strongly concave function. The followmg lemma is first needed:

Vee(s, ) :=E

S() = S] s (8)



Lemma 4.1. The argmax, V'™ admits a unique solution.

Proof. We first argue that the expected reward E[r(s, a)] is linear w.r.t. 7'. In fact, the linearity is a
direct consequence of the Lebesgue measure by viewing the distribution 7' as the measure function.
Then the sum of a linear function and a p-strongly concave function preserves the p-strong concavity.
Thus, the argmax, V"™ admits a unique solution. O

To proceed with our analysis, we state the following properties of the Fenchel conjugate, established
in Lemma 15 of [17].

Lemma 4.2 (Fenchel Conjugate Properties [17]). Let E = R™, m > 1 with inner product {-,-).
Let function g : E +— RT be a differentiable and p-strongly convex function with respect to some
norm || - ||, where Rt = R U {—o0,00}. Let X be its domain. The Fenchel conjugate g* is
defined as g*(y) = max e x{(x,y) — g(x). Then 3 properties hold: (i) g* is differentiable on E, (ii)
Vg*(y) = argmax,c x (x,y) — g(x), and (iii) g* is %-smooth with respect 1o || - ||+, the dual norm of

| - l. That is, for any yx, *(y1) = Va* (w)ll < Sllyr — el

We need the property of ¢;-norm of distributions on the set of probability distribution over finite sets.

Lemma 4.3. Suppose that there exists a real-valued function f on a finite set E. For any two
probability distributions 11 , 12, we have

’ > f@(e) = > f(= ‘ mxses /(@) ~ Minser f(z) 1 = el )

2
zeE zel

Proof. We first have that ) (11 (x) — ¥2(x)) = 0 and hence for any constant ¢ € R, one has
S, cla(@) = va(@)) = 0, then | Coep F@)1(0) = Loep F@)a(@)| = | pep(f(@) -

c) (¥ (x) —¢2($))’ < Dwep (@) =l - 1 (2) = va(2)] S maxeep | f(2) — |- Xpep [r(z) -
o (x)]. By choosing ¢ = (max,cp f(z) + mingep f(x)) /2, we get ). O

The proof to Theorem [4.3]is adapted from [18] in which they proved the argmax operator is Lipschitz
continuous with respect to the MF in their MF game setting. Our proof replaces the MF with
opponent’s policy, and we will show that our result matches theirs.

Proof. We first define the opponent-policy averaged reward and transition as follows:

,FREGT (57 a, ﬂ—T) = ]EaTNWT [rreg(s, a, aT)L and PT (S, a, WT) = IECLTMW1L [P(S7 a, aT)]

It is easy to show that both 7RES" and P are Lipschitz continuous in 7 under Assumptionuwith

the same constants d,., dp > 0 respectively. For any 7, ' e P(AD),

!

_REG! _REGT
|rREG (s,a,wT) — pREG (s,a,WT/)| = |Egtopt [Treg(s,a,aT)] — EQT/NWT/[rreg(s,a,aT )

/
= ]E(aT.,alf’)NCoupling(wT,TrT') T’(S, a, aT) - T‘(S a,a )‘ < IE(aT alf’)NCOupling(ﬂ'*,Tr“f')dT”a‘]L —al ”1
As this works for any coupling of (77, ’ﬂ'T/), we can pick the optimal coupling that achieves the ¢;-
Wasserstein distance, defined as W1 (zf, 7)) = inf, ccoupting(rt ') S arar @t — al’|l1dv(at,a®),
in which the infimum can be replaced by minimum when the coupling space is compact. Indeed,
when the action space is discrete and finite in our case, the compactness is guaranteed. Then,

_pEGt / / / /
\TREG (s,a,ﬂf) — pREG (s,a,7rJr )| < drEaN‘,r[Wl(’ITT,’iTT )] = dTW1(7TT,7TT ) < dr||7rJr — gt II1-

The last inequality can be established by noticing that for any optimal coupling ™V that attains
the minimum of the total variance distance, which is defined as dry (7T, 71) = TV (al # al') :=



inf,  coupting(nt xt7y V(a! # at’) = L=t — 7t'|;. The following condition must be satisfied with
the assumption that diam(.A") = 1 has been normalized:

/ /
Wi(rt, 7)) <E (gt aryaprv[lat —al'||1]
! ! / ! ! !
=v™V(a" =ad")E[|a" —a' ||y | o' =]+ ™V (0 #a")E[|a" —a' |1 | o' #al]

. / 1 / /
< diam(A")p™ (af # o) = §||7TT — 7l < et =2ty

We immediately have that [FRES' (s, a, 7t) — 7RES' (s, a, 71")| < d,[|7" — #1||;. The proof to P
being dp-Lipschitz with respect to 71 is symmetric. Now we can look at the learning problem.
Since at different rounds, we solve a different RL problem, we are essentially dealing with different
Q@-functions. we define

Q"' (s,a) = % (s,a,77) +7 Y Q' (s)P(s']s, a, ), (10)
s'eS

where Q**’rT (s) = max,eca Q’TT (s,a) for all s. The next is to prove that Q*”rT is dg-Lipschitz
continuous with respect to the states s, where dg = %(;}3/2. Define T+ as the Bellman operator

for the problem with 7f. We can rewrite Q""”T in the form of 77+ as follows

Q™' (s) = max { (s,0,7") +7 > Q" (s)PH(s]s, a,ww} =TQ" (s), (11)

€A
“ s’'eS

which is the Bellman optimality condition. It is known that the operator forms a y-contraction

mapping. Start with any @, and apply 77+, by Banach fixed point theorem, lim,, o 77 Q — Q*’”f.
Choose the initial ) to be dk-Lipschitz where dx < d,., then Q/d is 1-Lipschitz. For any s, so,
the following holds

_ 1 _ T
|T7rTQ(Sl) - Tﬂ'TQ(SQM < Ianeaj({‘TREG (Sla a, WT) - TREG (SQa a, T‘—T)|

+9] 32 QP Is1a,7) = 7 Q)P sz,0,71)| |
s'eS s'eS

s') - s') -
< max {dr||sl — 8|1 + 'ydK‘ Z %Pf(sqsl,a,ﬂ) _ Z QCZ(K)PT(S/‘SQ,LL,H)‘}
s'eS s'eS

drd
< (dr+7 K2 P) l[s1 — sal|1-

Inductively, we have for all n > 1, it holds that, |T7Q(s1) — T/Q(s2)] <
k n k
(drzz:é (242) +an (252) )nsl—sms«irz:_o (242) lIs1 =selh < =Z7alls: -

sz2l|1, where the second inequality is a result of dx < d,., and the third inequality uses the fact that
vdp/2 € [0, 1] with which the geometric series is bounded above. Hence, 17" is -continuous

dy
17’de /2
. t dy
for all n, which holds true when n — oo, where T, Q — Q™™ (s). We then set dg = T3
for notation easiness. We now claim that Q™™ is dy-Lipschitz continuous with respect to s, where

10



do = (d + ydeQ). For any ], m} € P(A'), we have

1Qr: — T||oo = max‘ FREG! (s,a,7}) +~ Z Q* (s))P(s']s,a, 7))
1
s’'eS
—FREG sa7r2 ’YZQ |sa7r;)‘
s’'eS
< ‘FREGT(S a 7T1r> _fREGT(S a, F;)‘

#o] QP s o) - X Q3 (60P )
s'eS s'eS

+v\2@* ('ls.a,md) = 0 Q2 (5)PI(sls,a, )|
s'eS s'eS

dpd
< dllf = w7 =52 ] =l + 1@ — Qe

where the first term follows the Lipschitz assumption on the reward and the last term uses the fact
that PT is probability. The second term can be bounded as follows. Notice that for any 7', Q**’TT is
dq-Lipschitz continuous implies Q*’”T /dg is 1-Lipschitz continuous with respect to s. Then,

‘ZQ (s'ls,a,7]) — ZQ "NP( ’\sawg)’

s'eS s’eS
Qi (') _
($'lsa,ml) = D~ Pl(s/|s, a,mh)|

s'ES ses @

dpd
QHP*(sam Pi(s,a,m}) |y < =52 ln] — o1,

where we use equation (9 and Lipschitz continuity on the transition kernel Then by rearranging the
terms, we obtain that ||Q* Q*T oo < doljw! — x}||1 where dy = (d +7 deQ

). Equation
(TO) can be rewritten as follows:

Q™' (s,a) =™ (s, 0,77 + 4 Y Q" (8)PI(s'|s, a,71) = H(m) = (gt o, 0) — H(m), (12)

s'eS

where ¢, 4 = FREG (5 . 7t) 4 5 >ses Q"™ (s')P(s']s, -, n") for any s. We now prove that is
(dr

] T - —
515~ g lloe = max |59 0 m]) 4 3 Q7 ()PS0, )

L de )-Lipschtiz continuous with respect to 7f. Indeed, one has

s’eS
—FREG sa772 "yZQ*” |sa7r$)‘
s'eS
swiw;||1+vr;eaj<\z&SQ;;<s’> f(s']s,a, ) - %Q Pi(s']s,a,m})
S S
ymax| 30 Q1P s awh) - 3 Q3P ss, 0.7
= s s'€S

dpdg

< dpflmf — mdll + QL — Qyllo + 7] — 73|Iy

dpdq
= (dr + 7o + v 52 1] = .

We now apply Lemma For any s € S, we write BR™(s, 7) = VH*(q,+ ;) where H* is the
Fenchel conjugate of H. Then,
re; re; dr + r)/do + PYde /2
IBR™(s, 7) — BR™%(s, x}) |1 < Hq,rLs — €1 gl = 5 QL = s

11



The argmax is therefore Lipschitz with constant
bringing back the agent index 7, we get

%[W. Then by substituting dy, d¢ and

dr i Yidp /2
di® = — (1 + +
P (1=7%)A=%dp/2) 1—vdp/2

) VieT. (13)
O

4.4 Stationary Stackelberg Markov Equilibrium with Mean-Field Followers

In this section, we present the proof of Theorem [2.3] and introduce an algorithm that iteratively
computes an SS-MFE.

4.4.1 Assumptions of Theorem 2.3

To establish the existence and uniqueness of an SS-MFE, we adopt the following assumption:

Assumption 4.2 (Uniqueness of Best Response and MF Update). For each agent ¢ € Z, for any
5; €85, €8_4,m_; € P(A_;), and for any follower’s MF pr € P(Sr x Ar), agent i’s best
response function BR;(s;, s_;, m_;, 1F) admits a unique solution. In addition, the MF update map
I(up, 7, mr) also returns a unique solution.

Assumption 4.3 (Lipschitz Best Responses). There exist constants df , dy , df, di, dl, dfy i > 0
such that for any admissible leader’s policies 7y, 7} € P(Ay), the follower’s policies 7, 7 €

P(Ar), and follower’s MF pp, u= € P(Sp x Ap):

sup |[BRr(sr,sr, 7L, fir) — BRE(sp, sp, 7, 1)1 < dillmr — 77|10+ dillw — i/ ||1,

SF,SL
(14)
ID(up, 7r,7r) = T, w, we)ll < dillpr — pelly + dillmp — 7|l + d lme — 7,
(15)
sup |IBRL (s, sp, Tr, i) — BRL(sL, s, 7, )|t < df [|mp — wplly + di |l — 4/ [|1-
SL,SF
(16)

4.4.2 Proof of Theorem 2.3]- Existence and Uniqueness of SS-MFE under Regularization

Proof. We define the map BRg,, : Sp x Sp, x P(Ar) — P(AFr) x P(Sr x Ap), which is simply
a composite update map from BRp and ['; that is, at the outer iteration k, given current states sg, Sy,
and leader’s policy 7%, the inner iteration returns BRp, (sp, s, mF) = (w5, ukr). Fix a leader
policy 7w, € P(Apr) and states sy, € Sp, sp € Sp. We first show that the mapping BR g, returns
a unique solution by showing that I is contractive, then we show that BRr,, forms a contractive
mapping. Consider any pair of follower policies 7p, 7% € P(Ar) and mean-field distributions
/LF,M% S P(SF X .AF) that satisfy 7p = BRF(SF7 SL,TL, ,uF) and 71'% = BRF(SF, SL,WL,/LIF),
we have:

IT(ur, 7, 7p) = D, 7wl < dillpr — wplls + dy lmp — 7l

< dillpr — pelly + dl |BRE(sp, sp,mo, pip) — BRp(sp, sp, mr, i) |1

< (dly + dfy d)|lpr — |-
Asdl + dff dr €10,1), ' forms a contractive mapping by Banach’s fixed point theorem. And since

BRF returns unique solution, we conclude that the follower’s side converges to a unique fixed point.
For any 1, 7, let the corresponding follower’s fixed points be (7}, #5) = BRp, (s, sg, mr), and

(7%, 1) = BRpu(sF, s, 7). Then, the following holds:
IBRpu(sF,sL,mL) — BRpyu(sp, sp,mp)ll = lImp — 7l + [luy — prlh
= HBRF(SFa SL, ﬂLvu}‘) - BRF(SF’ SL77T/L7M}:“>H1 + HF(U}FN TL, 77;‘) - F(N’?‘aﬂJL7 77}:")”1
< (dp +dp)llmp = mp |l + (d5 + dD)llep — pplh +dfllny — 75 |

< (df + )l — milly + @+ df+ ) (I = 75l + ok — i)
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By rearranging the term, we get
IBRpu(sFs 5L, mL) = BRpu(sp,sp,mp)lh = lnp — 7kl + Ik — il

L L

< dp +d,;
T 1= (dp 4 di+dE

)IIWL -7l

Finally, the leader’s best response satisfies the following:

IBRL (-, 75, i) — BRL(, mh, i) Iy < df|lmp — wh |l + dflln* — 1 |y
di +df

Fp
S T v a1 apy ™ i =

L L
Because ﬁ% max{d}, d}} €[0,1), BRy, forms a contractive mapping by Banach’s fixed
point theorem. As a result, there exists a unqiue SS-MFE to Gyg. O

4.4.3 Algorithm[I]- RL-Framework for Finding an SS-MFE

We now present a RL procedure for computing an SS-MFE. At each outer iteration, the leader updates
its policy based on the aggregate follower response, while the inner loop computes the consistent
mean-field and best response for the followers. The complete procedure is outlined below.

Algorithm 1: An RL to Single-Leader-MF-Follower Stackelberg Games

Input: Initial states s , s, leader’s policy 79, initial follower’s MF 1%, tolerance tol, RL
algorithms Alg; ,Alg;
for Iteration k = 0,1,2,--- do
Leade}:crotakes action ak ~ 7k (|sk)
Set iy = s :
for Iteration T = 0,1,2,--- do
. .k k, .
Follower learns its best response policy 7" = BRp(sh, sk k. py") through Alg . ;

Follower’s MF updates as 5" T = T(u%7, 7k wh™) ;

If (| — k7)) < tol, set (wh, k) = (%7, 1u%7) and exit the inner loop.
end
Follower takes action a%, ~ 7h(+|s%) ;
Leader learns its best response policy mh ™! = BRy (%, skl uk.) through Alg; ;
State transition sk ~ Pp, (s ak, ak, pk), sh ~ Pp(sh, ak, af uk)
If |75 — 7% ||, < tol, exit the outer loop.

end
Return (w38, 75E 13F) = (7k 7k, k) as the SS-MFE.

4.5 Numerical Experiment Specification and Results
4.5.1 Input Data and Hyper-parameters

Our numerical simulation’s data and code can be found at https://anonymous.4open.science/
r/StackelbergGame-B592 and also in the supplemental materials. To reproduce our results,
we require Python 3.10.11. All necessary packages are included in the requirement.txt file.
The main packages used are: Gymnasium (version 1.0.0, [19]) for environment setting; Stable-
Baselines3 (version 2.3.2, [20]) for RL; and Pyomo (version 6.7.2, |21} [22]]) for solving the economic
dispatch linear programming problem. We use a stylized 3-bus power system as the test case. The
input specifications for the bus nodes (including demographic data of prosumers and consumers),
transmission lines, and grid-level generators are provided in Tables[I] [2] and 3] respectively. The
numerical experiment uses PPO as the RL algorithm. The training specification is listed in Table
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Table 1: Bus Node Data

Bus Node Name

Parameter b1 b2 b3

P Load (kW) 110.0 110.0 95.0
Q Load (kVar) 40.0 40.0 50.0
Max Voltage (p.u.) 1.1 1.1 1.1
Min Voltage (p.u.) 0.9 0.9 0.9
Voltage Magnitude 1.1 0.92617 0.9
Voltage Angle 0.0 7.25883 -17.2671
Base KV 345 345 345
Prosumer Population 1,000 500 300
Energy Storage Capacity (kWh) 30 60 100
Energy Storage One-way Efficiency 0.8 0.8 0.8
Prosumer Income/household (US$) 25,000 45,000 65,000
Consumer Population 3,000 3,000 3,000

Consumer Income/household (US$) 15,000 15,000 15,000

Table 2: Transmission Line Data

Transmission Line Name

Parameter 11 12 13
Source Bus bl b3 bl
Target Bus b3 b2 b2
Reactance (€2) 0.065 0.025 0.042
Susceptance (S) 0.62 0.75 0.9
Normal Flow Limit (MW) 100 100 100

Table 3: Grid-Level Generator Data

Grid-Level Generator Name

Parameter gl g2 solar solar2
Bus bl b2 b3 bl
Fuel Type Oil Oil Solar  Solar
Cost Curve Coefficients* [0.2,5.0,0.0] [0.2,4.0,0.0] Free Free
Max Production (MW) 2000.0 1500.0 30.0 30.0

* The cost curve is represented as an array, where the first entry is the quadratic coefficient, the second is the linear
coefficient, and the third is the constant term. For an array [a, b, ¢], the cost function is C'(p) = ap® + bp + ¢,
where p is amount of energy consumption in MWh.

Table 4: Hyper-parameters for PPO Agents

Hyperparameter Aggregators Utility Company

Learning Rate 0.0003 0.0003
Discount Factor () 0.9999 0.9999
Entropy Coefficient 0.01 0.01
Batch Size 128 128
Number of Epochs 10 10
Steps per Update 1200 1200
Clip Range 0.2 0.2
Policy Network T [18, 36] [24, 36]
Value Network °© [18, 36] [24, 36]
Training length 2000 2000

22 All policy and value networks are fully connected neural networks. Each array lists the number of neurons at
each hidden layer.
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4.5.2 Input Data of Solar and Demand Shapes

We set each day to be of 8 time steps, each of which represents a 3-hour interval. Figure [3|shows the
input solar capacity shape from [23] and energy demand shapes for both prosumers and consumers
at each timestep adapted from [24]. Let A(a, b, ¢) denote a triangular distribution with lower limit
a, upper limit b, and mode c. In our simulation, we assume each consumer/prosumer’s demand and
solar profile follow the average shapes shown in Figure 3] scaled by a random factor drawn from
the triangular distribution A(0.8,1.2,1). This introduces variability across agents while preserving
the overall profile shape. All data is scaled relative to the average individual storage capacity across
all prosumers and consumers, computed using Table[T} We assume each consumer has a reference
storage capacity of 10kWh. The demand input shows the energy consumed in each time step. The
shapes show the total consumption for consumers, and net demand after subtracting their solar
generation for prosumers.

Solar Generation Shape Load Shape (Pr & Consumer)
Solar 120 Prosumer
1.00
1.0/ — Consumer
2:0.75
%" 0.8
= 0.50
= 0.6
.2 y
025 0.4 S
0.00
0 5 10 15 20 0 5 10 15 20
Hour of the Day Hour of the Day

Figure 3: Input shapes for solar capacity shape (left, data adapted from [23]]) and load demand shapes
for prosumers and consumers (right, data adapted from [24]). All data is scaled to be with respect to
the average storage capacity. The shadow areas indicate the noise bound of each shape.

4.5.3 Follower’s Learning Result — Price Volatility and Prosumer Net Demand Shape

To better measure the impacts of energy storage coupled with the RL algorithms on locational marginal
price (LMP) volatility, we adopt incremental mean volatility IMV) from [25]] as the metric. For a

sequence of LMPs {LMP, }3< . the IMV is defined as IMV = lim7_,o, 2 327, ‘LMPtH —LMP, ‘

Figure ] shows the IMV of the last 3 days between the two scenarios: with storage and RL, and
without storage or RL. Results indicate that the scenario with storage and RL achieves a significant
reduction in IMV, approximately 3 units lower, highlighting notably less volatile and more stable
electricity prices.

IMYV of Hub Price (Last 3 Days)
N B N it W 0 S I B
5

IS

****** With Storage and RL
3 —— No Storage or RL

MV

[¥)

06 6 12 18 0 6 12 18 0 6 12 18
Hour of the Day

Figure 4: Comparison of IMV of the last 3 days between two scenarios: with storage and RL, and
without storage or RL. Shadow areas show the 1-sigma error bounds across all simulations.

To further understand how RL influences consumption behavior, we examine the resulting net demand
profiles and compare them to the original input demand. As shown in Figure[5] the RL-based strategy
significantly reshapes prosumer net demand. It shifts a considerable portion of energy consumption
(charging) toward midday, as a response to low electricity prices and abundant solar generation. The
net demand turns negative during peak evening hours, indicating energy selling back to the grid when
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prices are high. The curve after learning is less smooth due to the existence of cost-free grid-level
solar generators, prosumers can increase their consumption without increasing the price too much.

Energy

—0.5
-1.0

Demand Shape

0.5

0.0+

—— Prosumer (with Storage and RL)
=== Prosumer (No Storage or RL)

Consumer

0 3 6 9 12 15

Hour of the Day

21

Figure 5: The vertical axis indicates the energy amount scaled down by a factor of the total storage
level of the corresponding agent types (prosumers or consumers). The shaded areas indicate one
standard deviation error bounds computed over all 10 days and all simulation runs.

4.5.4 Leader’s Learning Result - Energy Expenditure Incidence (EEI)

The EEI for both prosumers and consumers is shown in Figure[6] Under our experimental setup,
the utility company’s optimal strategy reduces the EEI gap between prosumers and consumers from
approximately 1% to about 0.7%, indicating improved equity across different income groups and
customer types. We note that the EEI values are typically small since energy spending constitutes
only a minor portion of total household income [26].

Prosumer and Comsumer EEI

Prosumer
—— Consumer n
- N

60 80

100

Figure 6: EEI over time for prosumers and consumers. The learned policy reduces the EEI gap
between the two groups, indicating improved income-based equity. Shaded regions represent one
standard deviation across simulation runs.
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