

Discovering EV Charging Site Archetypes Through Few Shot Forecasting: The First U.S.-Wide Study

Kshitij Nikhal¹, Luke Ackerknecht¹, Benjamin S Riggan², Phil Stahlfeld¹ Alpha Grid¹, University of Nebraska-Lincoln²

1. Input time series dataset

 $X = \{x_1, x_2, \dots, x_n\}$

aggregated at a day level.

MOTIVATION

- Electric vehicles (EVs) are central to achieving net zero emissions in the United States.
- Existing research is limited by small datasets, proximity-based clustering, and poor generalization to newly deployed sites with sparse data, failing to capture temporal and contextual dependencies across diverse usage environments.
- Forecasting EV charging demand informs infrastructure planning, grid stability, dynamic pricing, and climate policy.

METHODOLOGY

2. Characterize site-level demand into weekly utilization profile and catch22 features.

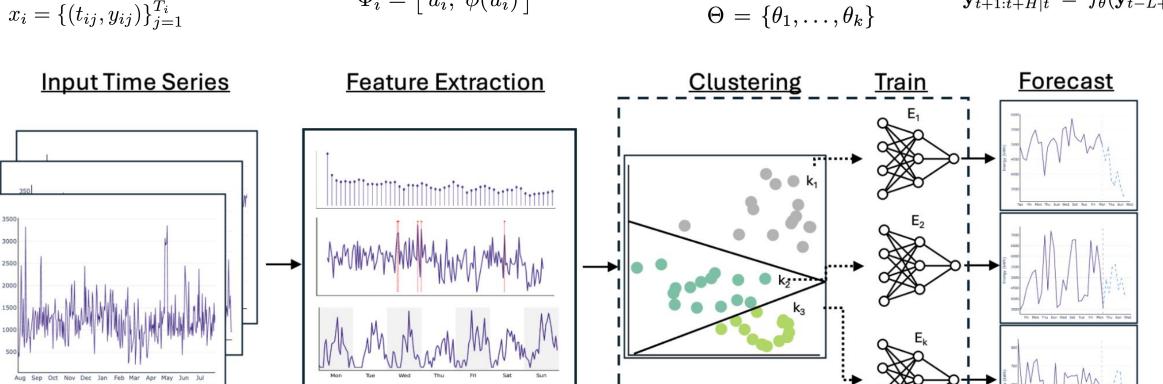
 $\Phi_i = \left[u_i, \ \phi(u_i) \right]$

Cluster and train k-models for each cluster.

 $\arg\min_{k} \|\Phi_i - \mu_k\|_2^2$

4. Forecast the next H days using past L days.

 $\hat{\mathbf{y}}_{t+1:t+H|t} = f_{ heta}(\mathbf{y}_{t-L+1:t})$



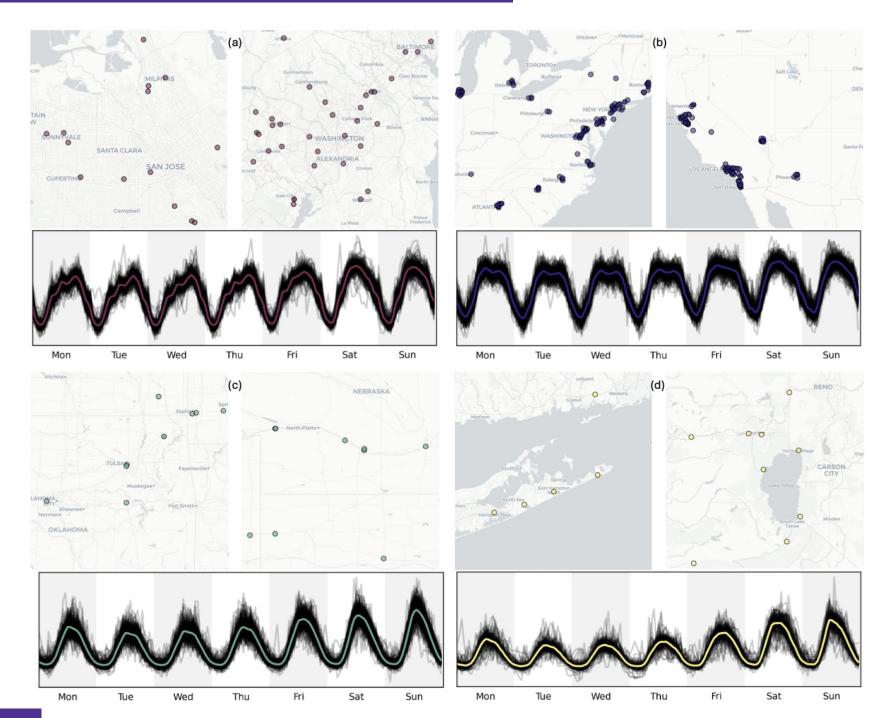
★ The framework leverages historical demand data to generate features for clustering, with expert models trained on resulting site clusters to forecast demand. This is repeated for different k.

KEY CONTRIBUTIONS

- Nationwide Dataset: Comprehensive coverage of nearly all U.S. public Level-3 (DC fast) chargers, enabling large-scale, high-resolution analysis of temporal and behavioral patterns.
- Forecast-Guided Clustering: Integration of clustering and few-shot forecasting to uncover behaviorally consistent site archetypes.
- Semantic Interpretation: Linking archetypes to geography, amenities, and usage context, providing interpretable insights into charging behavior.
- Knowledge Transfer: Demonstrating that archetype-specific expert models generalize better than global baselines for new or data-sparse sites.

DISCOVERED ARCHETYPES

- ★ Archetype patterns range from regular weekday commuter flows to volatile and event-driven surges.
- (a) Recurring weekday patterns across downtown cores.
- (b) Stable daytime demand in metro areas adjacent to retail chains.
- (c) Utilization concentrated along major highways.
- demand near leisure hubs such as Lake Tahoe and Hampton Bays.

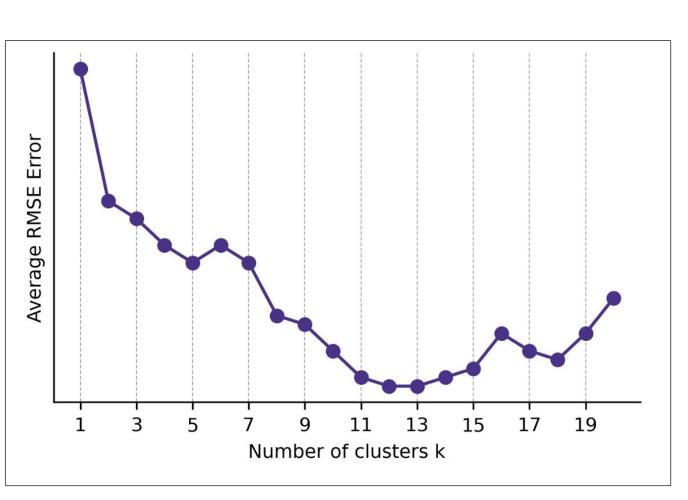


EXPERIMENTAL RESULTS

★ Archetypes and performance of global (G) vs. expert (E) models.
Expert models consistently outperform, especially in volatile clusters.

Archetype (% of sites) and Description	sMAPE		RMSE	
	G	E	G	Е
A1. Steady Retail (7%): Stable all-week 9AM-5PM demand (†	16.15	15.82	614	610
1.3σ), predominantly located near retail chains in cities such as Los				
Angeles, Chicago, Denver, and Washington DC.	~	•• = -		
A2. Urban Corridors (12%): Large weekend peaks ($\uparrow 2.6\sigma$) co-	24.17	20.76	728	65
located with travel plazas near popular destinations and metros.	20.22	20.70	(20	CO (
A3. Regional Corridors (12%): Similar peaks ($\uparrow 2.1\sigma$) to A2 but	30.23	28.60	638	60
lower baseline and higher variance, reflecting sparser corridors.	24.77	22.87	799	73
A4. Mixed Urban (12%): Blend of commuter and leisure usage $(\uparrow 1.5\sigma)$, observed in dense downtowns with diverse land use.	24.77	22.07	199	13.
A5. Balanced Urban (8%): Similar to A1, but cleaner day/night	23 46	21.80	650	60
split, moderate peaks ($\uparrow 1.21\sigma$), and deep troughs ($\downarrow 1.75\sigma$).	23.10	21.00	050	00
A6. Commuter Corridors (15%): Weekday AM/PM ramps exhibit	24.50	23.23	614	57
smoother peaks ($\uparrow 1.40\sigma$) compared to sharper weekend peaks (\uparrow			Address Colonia	
1.9σ), reflecting work–home travel rhythms.				
A7. Mega Metro (4%): Consistent, saturated ($\uparrow 1.0\sigma$) profile char-	12.30	12.91	1126	100
acteristic of large EV markets such as Southern California, reflecting				
large-scale adoption.		50.00	12 1030 1030 1980	20 1028
A8. Weekday Ramps (7%): Pronounced weekday ramps with	12.72	8.69	1232	113
evening plateaus ($\uparrow 1.5\sigma$), seen in San Francisco, Dallas and Seattle.	17.06	45 40	000	=0
A9. Suburban Shopping (13%): Spread across most states with	17.86	17.19	829	79
midday peaking ($\uparrow 1.55\sigma$), tied to grocery/Big Box stores.	22 67	22 90	602	66
A10. Emerging Metro (3.5%): Found in Houston, Atlanta, Orlando, and Dallas, where workplace, retail, and leisure usage combine but	33.07	34.09	682	66
baseline demand remains volatile. ($\downarrow 1.76\sigma$ and $\uparrow 1.21\sigma$).				
A11. Seasonal Leisure (4%): Stronger weekend/holiday surges	34.48	31.73	762	70
$(\uparrow 2.3\sigma)$ than weekdays $(\uparrow 1.3\sigma)$, near resorts and vacation homes.	2 1. 10		, 02	, 0
A12. Exactic (2.5%): Low baseline demand with irregular peaks	65.46	61.16	457	37
$(\uparrow 1.24\sigma)$ and troughs $(\downarrow 0.94\sigma)$.				

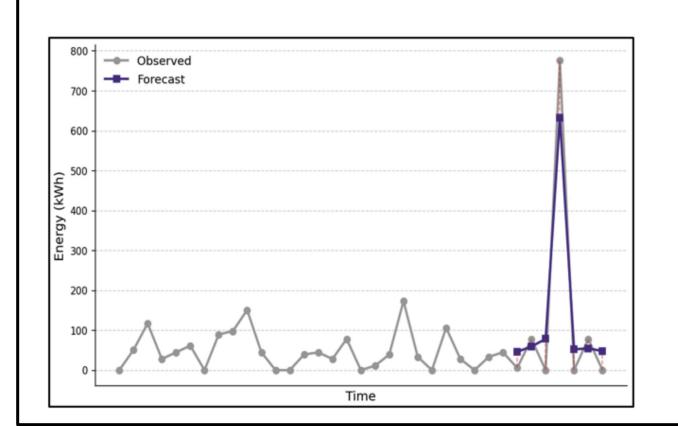
The global model (k=1)
 provides a strong baseline,
 while specialized models
 yield substantial gains up to
 an optimal k=12.

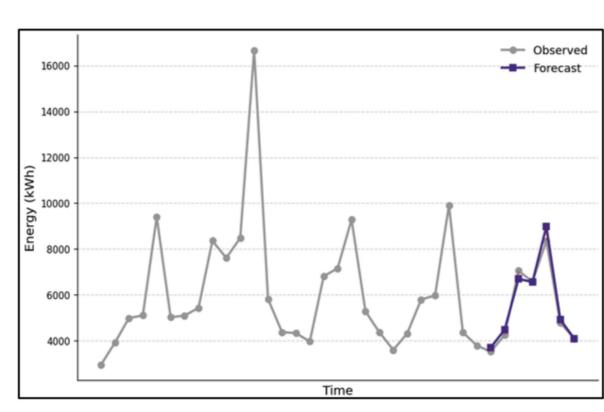


- Beyond this point, excessive clustering reduces predictive power, highlighting the importance of balancing cluster size.
- This suggests that twelve distinct site archetypes capture dominant demand patterns and enable robust few-shot inference.

FORECASTING

★ Effectively transfers archetype-specific knowledge to forecast both peak surges and recurring demand trends.





CONCLUSION

We present the first nationwide assessment of the U.S. public fast-charging market, highlighting utilization patterns and site-level heterogeneity. Using forecast-guided evaluation, we identify the optimal number of archetypes and show that cluster-aware expert models outperform global models in few-shot inference. Beyond accuracy gains, these insights strengthen interconnection studies, guide incentives toward underserved areas, and inform underwriting through archetype membership. Future work will extend to longer-term horizons, soft clustering, and external signals (e.g., events). These directions will further enhance our ability to anticipate and manage the rapidly evolving EV charging ecosystem.