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Conclusion and Future Work

Accurate atmospheric profiles are often corrupted by low SNR gates, R |
. . o " . . esults
range folding, and discontinuities. Traditional gap filling blurs fine-scale
structure, and most deep models lack calibrated uncertainty. We present Method PSNR (dB) 1 SSIM 1 MSE | FID L Spectral Fidelity T
CuMoLoS-MAE, a curriculum-guided Monte Carlo stochastic-ensemble " = )
masked autoencoder that (i) restores fine-scale features such as updraft SxoVieansRiiter S 0.4950 0.5186 213 91.67%
and downdraft cores, shear lines, and small vortices, (ii) learns a data- CVAE 26.70 0.4190 0.4036 3.28 80.21%
driven prior over atmosph.eric vertical pro-files,- angl (iii) quant-ifies pixel- DnCNN (Noise2Void) 23.09 0.6466 0.6232 0.12 36.46%
wise uncer-tamty. We bellevg that- our hl-gh-fldellty, uncertalr.mty—aware U-Net (Noise2Void) 2770 0.7016 0.2581 0.44 49 .48%
workflow improves convection diagnostics, supports real-time data
assimilation, and strengthens long-term climate reanalysis. CuMoloS-MAE 29.45 0.7857 0.1854 1.87 93.75%
PSNR (dB) T SSIM T MSE | Spectral Fidelity T
. 64 x 64 29.45 0.7857 0.1854 1.87 93.75%
Model Architecture
128 x 64 30.11 0.7697 0.2253 3.73 87.50%
Micro-patchified MAE: 256 x 64 28.55 0.6103 0.3205 5.50 38.02%
* Each 64x64 velocity slice is tokenized into 2x2 micro-patches.
e 12-layer ViT encoder operates on the visible tokens Configuration PSNR (dB) T SSIM 1 MSE | Spectral Fidelity T
* A-layer decoder reconstructs the full field. Without Curriculum 29.45 0.7857 0.1854 | 1.87 93.75%
Simple Curriculum Training: With Curriculum 28.90 0.7868 0.2106 1.88 93.23%
* Masking ratio ris set to 50% for the first 5 epochs
* rincreased via a cosine ramp to 70% by epoch 30 and held fixed q
* Optimisation uses MSE error computed on the hidden pixels. 10! Datasets
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* Apply an SNR filter (intensity >= 0.005) — =
e Clamp valid velocities to the range [-5, 5] m s Original Reconstructed Uncertainty Map "% 0.0 %
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Training runs for 500 epochs on a single NVIDIA A100 GPU using AdamW o ’ ’ é”
(base learning rate 1.5e-4 * 32/256, weight decay 0.05) with a batch size o 34
of 32. We use a cosine learning-rate schedule with warmup aligned to o 101100 —99 _98 —97 —06 —95 94 —10
the mask-ratio curriculum period. o Longitude / °
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On our denoised/smoothed output from CuMulLoS, we perform K-means clustering to 20 ol
classify regions of positive, neutral and negative vertical velocities, and using 4- 2
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connected-components methodology to identify updrafts and downdrafts. o .
|
3 30 - Wt 30 - e
* Updraft-Downdraft-Neutral labeling: Run K-means with K=3 on the reconstructed = |
velocity field and map to following: down (negative), neutral (near zero), up (positive). ~ 50 4 20 - =
® Objects & metrics: For each class, label 4-connected components and compute the ! |
following: (a) duration, (b) height and (c) area 10 - & 10 -
®* Meteorology gates & summaries: Keep downdraft if duration > 60 px, height > 3 px, i ‘ —4
: : : : 0 . , . , , | 0- . : : , :
area = 150 px; keep updraft if duration > 120 px, height > 4 px, area > 300 px. g 500 200 206 800 1600 1560 © 500 00 &ob a00 2000 1500
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CuMoLoS-MAE reconstructs Doppler-lidar vertical velocity with high fidelity while providing a per-pixel uncertainty map that reliably predicts where errors
will be larger. By restoring fine-scale cores and preserving low-frequency energy, the method improves convection diagnostics and is suitable for
confidence-aware ingestion into weather and climate pipelines. A simple mask-ratio curriculum speeds convergence, and Monte Carlo masking vyields
calibrated uncertainty without extra labels. In future, we will expand training to larger multi-season datasets, evaluate real-time operational use, and use
uncertainty to weight observations in operational assimilation.




