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Accurate atmospheric profiles are often corrupted by low SNR gates,
range folding, and discontinuities. Traditional gap filling blurs fine-scale
structure, and most deep models lack calibrated uncertainty. We present
CuMoLoS-MAE, a curriculum-guided Monte Carlo stochastic-ensemble
masked autoencoder that (i) restores fine-scale features such as updraft
and downdraft cores, shear lines, and small vortices, (ii) learns a data-
driven prior over atmospheric vertical profiles, and (iii) quantifies pixel-
wise uncertainty. We believe that our high-fidelity, uncertainty-aware
workflow improves convection diagnostics, supports real-time data
assimilation, and strengthens long-term climate reanalysis.

Results

K-Means Clustering and Object Identification

On our denoised/smoothed output from CuMuLoS, we perform K-means clustering to
classify regions of positive, neutral and negative vertical velocities, and using 4-
connected-components methodology to identify updrafts and downdrafts.

• Updraft-Downdraft-Neutral labeling: Run K-means with K=3 on the reconstructed
velocity field and map to following: down (negative), neutral (near zero), up (positive).

• Objects & metrics: For each class, label 4-connected components and compute the
following: (a) duration, (b) height and (c) area

• Meteorology gates & summaries: Keep downdraft if duration ≥ 60 px, height ≥ 3 px,
area ≥ 150 px; keep updraft if duration ≥ 120 px, height ≥ 4 px, area ≥ 300 px.

Model Architecture

Micro-patchified MAE:
• Each 64×64 velocity slice is tokenized into 2×2 micro-patches. 
• 12-layer ViT encoder operates on the visible tokens
• 4-layer decoder reconstructs the full field.

Simple Curriculum Training:
• Masking ratio r is set to 50% for the first 5 epochs
• r increased via a cosine ramp to 70% by epoch 30 and held fixed 
• Optimisation uses MSE error computed on the hidden pixels.

Monte-Carlo Ensembling:
• Random masks generated for each forward pass at inference time
• Masking, encoding, and decoding process is repeated N = 50 times
• Ensemble is aggregated to compute the mean and pixel-wise σ

Training Procedure

Preprocessing:
• Apply an SNR filter (intensity >= 0.005)
• Clamp valid velocities to the range [-5, 5] m s-1
• Extract non-overlapping 64×64 patches.

Training runs for 500 epochs on a single NVIDIA A100 GPU using AdamW
(base learning rate 1.5e-4 * 32/256, weight decay 0.05) with a batch size
of 32. We use a cosine learning-rate schedule with warmup aligned to
the mask-ratio curriculum period.

Method PSNR (dB) ↑ SSIM ↑ MSE ↓ FID ↓ Spectral Fidelity ↑
8x8 Mean-Filter 23.41 0.4950 0.5186 5.13 91.67%

CVAE 26.70 0.4190 0.4036 3.28 80.21%
DnCNN (Noise2Void) 23.09 0.6466 0.6232 0.12 36.46%
U-Net (Noise2Void) 27.70 0.7016 0.2581 0.44 49.48%

CuMoLoS-MAE 29.45 0.7857 0.1854 1.87 93.75%
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Conclusion and Future Work

CuMoLoS-MAE reconstructs Doppler-lidar vertical velocity with high fidelity while providing a per-pixel uncertainty map that reliably predicts where errors
will be larger. By restoring fine-scale cores and preserving low-frequency energy, the method improves convection diagnostics and is suitable for
confidence-aware ingestion into weather and climate pipelines. A simple mask-ratio curriculum speeds convergence, and Monte Carlo masking yields
calibrated uncertainty without extra labels. In future, we will expand training to larger multi-season datasets, evaluate real-time operational use, and use
uncertainty to weight observations in operational assimilation.

Window PSNR (dB) ↑ SSIM ↑ MSE ↓ FID ↓ Spectral Fidelity ↑
64 x 64 29.45 0.7857 0.1854 1.87 93.75%

128 x 64 30.11 0.7697 0.2253 3.73 87.50%
256 x 64 28.55 0.6103 0.3205 5.50 38.02%

Configuration PSNR (dB) ↑ SSIM ↑ MSE ↓ FID ↓ Spectral Fidelity ↑

Without Curriculum 29.45 0.7857 0.1854 1.87 93.75%

With Curriculum 28.90 0.7868 0.2106 1.88 93.23%

Datasets
Location: Southern Great Plains
Instrument: Doppler-Lidar
Variable: Vertical Velocity (w) vertical profiles
Timespan: June 2011
Frequency: 1s


