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Abstract

Accurate atmospheric profiles from remote sensing instruments such as Doppler Li-
dar, Radar, and radiometers are frequently corrupted by low-SNR (Signal to Noise
Ratio) gates, range folding, and spurious discontinuities. Traditional gap filling
blurs fine-scale structures, whereas deep models lack confidence estimates. We
present CuMoLoS-MAE, a Curriculum-Guided Monte Carlo Stochastic Ensemble
Masked Autoencoder designed to (i) restore fine-scale features such as updraft
and downdraft cores, shear lines, and small vortices, (ii) learn a data-driven prior
over atmospheric fields, and (iii) quantify pixel-wise uncertainty. During training,
CuMoLoS-MAE employs a mask–ratio curriculum that forces a ViT decoder to
reconstruct from progressively sparser context. At inference, we approximate the
posterior predictive by Monte Carlo over random mask realisations, evaluating the
MAE multiple times and aggregating the outputs to obtain the posterior predic-
tive mean reconstruction X̄ together with a finely resolved per-pixel uncertainty
map σX . Together with high-fidelity reconstruction, this novel deep learning-
based workflow enables enhanced convection diagnostics, supports real-time data
assimilation, and improves long-term climate reanalysis.

1 Introduction

Understanding climate change’s impacts on extreme events requires accurate and continuous mea-
surements from remote sensing instruments such as Doppler-lidar, radar, or radiometers. However
these data often suffer from missing or corrupted returns that must be filled in before they can be
reliably used in downstream applications. Classical gap-filling procedures, such as sliding-window
mean filters [1], smear out critical small-scale features like shear lines and updraft cores. Recent ad-
vances in deep-learning approaches (e.g. variational autoencoders [2]) can recover sharper structures
but provide no information to gauge reconstruction uncertainties when these methods are used in
downstream assimilation and alerting frameworks.

To tackle these shortcomings, we propose CuMoLoS-MAE, a Curriculum-Guided Monte Carlo
Stochastic Ensemble Masked Autoencoder, a novel approach that comprises three core mechanisms:
(1) curriculum masking [3] to stabilise training and encourage reconstruction from sparser context,
(2) micro-patch based on masked autoencoder [4] to capture fine structure and mid-scale dynamics,
and (3) Monte-Carlo [5] ensembles to produce per-pixel uncertainty maps alongside the final recon-
structions. In this paper, we have used Doppler-lidar measurements from the Southern Great Plains
(SGP) provided by the Atmospheric Radiation Measurement (ARM) [6] as a case study, and present
our reconstructions of the vertical velocity field and their corresponding uncertainty quantification.
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2. Inference Phase

Figure 1: From Doppler lidar time–height arrays we form 64× 64 images. During training we randomly hide a
subset of patch tokens (the mask ratio increases from 0.5 to 0.7 over a curriculum), add positional encodings,
pass the visible tokens through a ViT encoder, and reconstruct the full field with a lightweight decoder. The loss
is computed only on the hidden pixels. At test time, for each unseen patch we draw 50 independent random
masks and run the same pipeline to produce multiple reconstructions. We then average these reconstructions to
obtain a single best denoised estimate of the field and use the pixel-wise spread of the ensemble as an uncertainty
map.

2 Data

We have used vertical velocity data from a Doppler lidar at the ARM SGP site, stored as time–height
arrays in NetCDF format with 320 range gates at 30 m spacing, where each range gate represents
the mean return from a fixed vertical layer. Focusing on the lowest 64 gates (1.92 km), we extract
non-overlapping 64× 64 patches as inputs for training and evaluation. The model is trained on data
from June 1–9, 2011 and evaluated on an unseen day: June 15, 2011.

3 Methodology

3.1 CuMoLoS–MAE Architecture

Inspired by masked autoencoding and stochastic ensembling methods for uncertainty quantification,
the CuMoLoS-MAE framework is comprised of two stages as shown in Figure 1:

• Micro–patchified MAE with curriculum: Each 64× 64 Doppler–velocity slice is tokenized into
2 × 2 micro–patches. A 12–layer ViT [7] encoder processes visible tokens and a 4–layer decoder
reconstructs the field. During training, the mask ratio r starts at 50% for 5 epochs, then cosine–ramps
to 70% by epoch 30 and is held thereafter; optimization uses masked–MSE on the hidden pixels.

• Monte Carlo ensembling: At inference time, a new random mask is generated for each forward
pass and the masking, encoding, and decoding process is repeated N = 50 times. The resulting
ensemble of predictions is then aggregated to compute the mean and pixel-wise standard deviation:

X̄ =
1

N

N∑
i=1

X̂(i), σX =

√√√√ 1

N

N∑
i=1

(
X̂(i) − X̄

)2
(1)

yielding a high-fidelity denoised reconstruction X̄ and per-pixel uncertainty estimate σX .

3.2 Training Procedure

The data are preprocessed by applying an SNR filter (intensity ≥ 0.005) and clamping valid ve-
locities to the range [−5, 5]m s−1. From the resulting fields, non-overlapping 64× 64 patches are
extracted. Training is conducted over 500 epochs on a single NVIDIA A100 GPU using the AdamW
optimiser [8] (base learning rate 1.5 × 10−4 · 32

256 , weight decay 0.05) with a batch size of 32. A
cosine learning rate schedule with warmup aligned to the mask-ratio curriculum period is employed.

2



3.3 Uncertainty map

At inference, N = 50 independent random masks are drawn per image, each masked input is passed
through the decoder, and the resulting ensemble is aggregated (Eq. (1)) to obtain the posterior mean
X̄ and the pixel-wise standard deviation σX . The value of N is chosen to balance ensemble stability
with computational cost.

4 Results

On the 1028 held-out test set, CuMoLoS-MAE surpasses the 8×8 mean filter, Noise2Void U-
Net [9], Noise2Void Denoising CNN (DnCNN) [10], and a Convolutional Variational Autoencoder
(CVAE [11])(Table 1). It also attains the highest low-frequency spectral fidelity (93.75%). Spectral
integrity compares temporal Power Spectral Density of the denoised output Pden(f) and raw signal
Praw(f) via:

εlog(f) =
log10 Pden(f)− log10 Praw(f)

log10 Praw(f)
. (2)

Fidelity is the fraction of bins with |εlog(f)| ≤ 0.5 for f ≤ 0.01Hz. CuMoLoS-MAE satisfies this
in 93.75% of low-frequency bins, preserving storm-scale energy. Gate 0 is the principal exception,
likely owing to its location at the base of the atmospheric boundary layer as shown in Figure 2. The
DnCNN (Noise2Void) baseline yields the best FID (0.12) despite worse reconstruction and lower
spectral fidelity, likely due to perceptual similarity in low-variance regions.

Table 1: Reconstruction performance and low-frequency spectral fidelity on 1028 held-out radar patches. Up
arrow (↑) indicates higher is better; down arrow (↓) indicates lower is better.

Method PSNR (dB) ↑ SSIM ↑ MSE ↓ FID ↓ Spectral Fidelity ↑

8×8 Mean-Filter 23.41 0.4950 0.5186 5.13 91.67%
CVAE 26.70 0.4190 0.4036 3.28 80.21%
DnCNN (Noise2Void) 23.09 0.6466 0.6232 0.12 36.46%
U-Net (Noise2Void) 27.70 0.7016 0.2581 0.44 49.48%
CuMoLoS-MAE (ours) 29.45 0.7857 0.1854 1.87 93.75%

4.1 Uncertainty Quantification and Climate Utility

The reliability of the uncertainty estimates is assessed by computing the pixel-wise Pearson correlation
between the Monte Carlo standard deviation map σX and the absolute reconstruction error. Across
1028 test images, strong alignment is observed, with a mean per-patch correlation of r = 0.961±
0.037, a global correlation of r = 0.961, and a Spearman rank correlation of ρ = 0.926. As illustrated
in Figure 2, these high correlations indicate that σX closely tracks the true reconstruction error, i.e.,
the model reliably predicts where its outputs are likely to be accurate and where they are not. These
pixels are split into ten bins by σX and the Mean Absolute Error (MAE) in each is computed. The
MAE rises monotonically from 0.02845 to 0.99939 across σ-deciles (a 35.1× gap), and the top 1, 5,
10, and 20 percent of pixels by σ capture 10.1, 30.6, 43.4, and 59.4 percent of total |error|, confirming
the utility of σX for error triage in downstream assimilation and warning systems.

4.2 Effect of Temporal Context on Reconstruction and Spectral Fidelity

Table 2: Reconstruction quality and spectral fidelity across different temporal window sizes. Up arrow (↑)
indicates higher is better; down arrow (↓) indicates lower is better.

Window (time x range gate) PSNR (dB) ↑ SSIM ↑ MSE ↓ FID ↓ Spectral Fidelity ↑

64× 64 29.45 0.7857 0.1854 1.87 93.75%
128× 64 30.11 0.7697 0.2253 3.73 87.50%
256× 64 28.55 0.6103 0.3205 5.50 38.02%
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From Table 2, reconstruction quality and low–frequency spectral fidelity decline as the window
increases from 64× 64 to 128× 64 and then 256× 64, indicating a predominantly local denoising
regime in which 64× 64 provides sufficient context. The slight PSNR bump at 128× 64 arises from
a few near-constant, ultra–low-error intervals overweighted by the log average (MSE remains nearly
unchanged), which is not statistically significant for any meaningful inference. At 256× 64, token
count and masked area rise without added capacity, increasing errors across metrics.

Original Image Uncertainty MapReconstructed Image

Figure 2: Visual diagnostics for one sample. Left: log-PSD at selected range gates—reconstruction matches the
original (small gaps) except at Gate 0 near the boundary-layer base. Centre-left: original Doppler-lidar vertical
velocity. Centre-right: CuMoLoS-MAE reconstruction. Right: per-pixel uncertainty map σX .

4.3 Effect of Mask-Ratio Curriculum on Training Efficiency

Curriculum masking accelerates convergence while preserving perceptual quality. Reconstruction
loss falls below 0.20 by epoch 198 (vs. 224 for fixed; 13 min faster) and reaches 0.189 by epoch 286
(vs. 333). As shown in Table 3, metrics are comparable, so we conclude that curriculum masking
improves training efficiency by ∼10% despite marginally better final scores with fixed masking.

Table 3: Effect of mask-ratio curriculum on reconstruction, FID, and spectral fidelity (1028 patches). Up arrow
(↑) indicates higher is better; down arrow (↓) indicates lower is better.

Configuration PSNR (dB)↑ MSE ↓ SSIM ↑ FID ↓ Spectral Fidelity ↑

Without curriculum 29.45 0.1854 0.7857 1.87 93.75%
With mask-ratio curriculum 28.90 0.2106 0.7868 1.88 93.23%

5 Conclusion and Future Work

We have introduced CuMoLoS-MAE, a curriculum-guided masked autoencoder with Monte Carlo
ensembling, which delivers state-of-the-art reconstructions together with per-pixel uncertainty. By re-
covering fine-scale features lost to noise or masking and flagging low-confidence regions, CuMoLoS-
MAE improves detection of atmospheric coherent structures. This capability is valuable for Earth
observation and climate modelling, as more accurate reconstructed fields improve (1) our understand-
ing of extreme events and their evolution under global warming, (2) data assimilation in numerical
weather prediction systems, and (3) process-level analysis within atmospheric sciences. Uncertainty
maps further enable reconstitution by weighting observations according to confidence.

Specifically, we plan to use this model to create datasets of vertical profiles to study the shallow-
to-deep transition of convection. Reconstructing denoised vertical profiles and their associated
uncertainties will help with (a) updraft detection, (b) better characterize their width and kinetic energy,
and (c) improve predictors of the transition timing and likelihood. We will evaluate the generalizability
of our model across lidar systems provided by ARM (e.g. new datasets from Bankhead National
Forest) and assess real-time deployment for operational assimilation. We also plan to scale training
from days to months and years to capture climatological variability, support long-term reanalysis,
and test robustness under changing environmental conditions.

4



References
[1] Lesti G, Spiegel S. A Sliding Window Filter for Time Series Streams. In: IOTSTREAMING@

PKDD/ECML; 2017. .

[2] Pinheiro Cinelli L, Araújo Marins M, Barros da Silva EA, Lima Netto S. Variational autoencoder.
In: Variational methods for machine learning with applications to deep networks. Springer;
2021. p. 111-49.

[3] Madan N, Ristea NC, Nasrollahi K, Moeslund TB, Ionescu RT. Cl-mae: Curriculum-learned
masked autoencoders. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision; 2024. p. 2492-502.

[4] He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are scalable vision learn-
ers. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition;
2022. p. 16000-9.

[5] Harrison RL. Introduction to monte carlo simulation. In: AIP conference proceedings. vol.
1204; 2010. p. 17.

[6] Sisterson D, Peppler R, Cress T, Lamb P, Turner D. The ARM southern great plains (SGP) site.
Meteorological Monographs. 2016;57:6-1.

[7] Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, et al. A survey on vision transformer. IEEE
transactions on pattern analysis and machine intelligence. 2022;45(1):87-110.

[8] Llugsi R, El Yacoubi S, Fontaine A, Lupera P. Comparison between Adam, AdaMax and Adam
W optimizers to implement a Weather Forecast based on Neural Networks for the Andean city
of Quito. In: 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM). IEEE; 2021. p.
1-6.

[9] Song TA, Yang F, Dutta J. Noise2Void: unsupervised denoising of PET images. Physics in
Medicine & Biology. 2021;66(21):214002.

[10] Zhao Y, Li Y, Dong X, Yang B. Low-frequency noise suppression method based on improved
DnCNN in desert seismic data. IEEE Geoscience and Remote Sensing Letters. 2018;16(5):811-
5.

[11] Bao J, Chen D, Wen F, Li H, Hua G. CVAE-GAN: fine-grained image generation through
asymmetric training. In: Proceedings of the IEEE international conference on computer vision;
2017. p. 2745-54.

5


	Introduction
	Data
	Methodology
	CuMoLoS–MAE Architecture
	Training Procedure
	Uncertainty map

	Results
	Uncertainty Quantification and Climate Utility
	Effect of Temporal Context on Reconstruction and Spectral Fidelity
	Effect of Mask-Ratio Curriculum on Training Efficiency

	Conclusion and Future Work

