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Motivation & Summary

HVAC systems can account for 30–40% of build-
ing energy use, so timely Fault Detection &
Diagnosis (FDD) in chillers matters for cost
and climate. We present a deployment-oriented
ARX→SVM pipeline with:

•Forgetting-factor tuning to align estimator
memory with macro-F1,

•Clean ablations vs. a static regression baseline
at matched feature budgets,

•Latency/memory audit: sub-ms per-
timestep RLS (recursive least squares) updates
on commodity hardware,

•Uncertainty & significance: time-series-
aware CIs and paired tests.

Results on ASHRAE RP-1043 [1] show competi-
tive macro-F1 while preserving interpretability and
runtime efficiency. (See paper for details.)

Figure 1: Typical HVAC system.

Data & Setup (ASHRAE
RP-1043)

Public chiller dataset with normal/faulty opera-
tion at 2-min sampling; we respect temporal order
(train first block, test later), tune hyperparame-
ters on training-only validation, and report mean
±95% CI over repeated temporal splits. (Details in
paper.)
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Figure 2: Chiller power (kW) over time (illustrative seg-
ment). Temporal structure motivates ARX features.

Method: Hybrid ARX→SVM
ARX model. With target y(t) (chiller power)
and exogenous inputs xk(t), we estimate
y(t) = p∑

j=1
αj y(t−j)+ m∑

k=1
qk∑

ℓ=0
βk,ℓ xk(t−ℓ)+ε(t).

We fit θ(t) = [α, β] online via Recursive Least
Squares (RLS) with exponential forgetting:

λ = exp(−∆/τf) ,

linking the forgetting factor λ to a time constant
τf (with sampling interval ∆). We select lags p, qk

using domain knowledge and ACF/PACF screen-
ing.
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Figure 3: ACF (left) and PACF (right) of chiller kW guide
p, qk.

Classifier. At each time step we feed the ARX
parameter vector θ(t) into an SVM, comparing
against NB, LR, RF, XGBoost, and a regression-
only baseline (no lags).

Offline: tune λ on validation F1 and train SVM

Figure 4: Offline ARX→SVM inference path. θ(t) are ARX
parameters. Choose λ⋆ to maximize validation macro-F1.

Online: estimate θ(t) and classify.

Figure 5: Online ARX→SVM inference path.

Tuning Memory for FDD

We tune λ to maximize validation macro-F1
(golden-section search). In our study, λ⋆ =0.9935
corresponds to ∼180 samples; at a 2-min interval
this is ∼ 6 hours of memory, a good balance be-
tween reactivity and stability for evolving faults.

Results on RP-1043
Ablation: ARX features substantially outperform
regression-only across classifiers.

Table 1: Mean macro-F1 (%) ± 95% CI. RF vs. SVM CIs
overlap; paired McNemar tests show no sig. difference at
α = 0.05.
Classifier ARX-based F1 (%) Regression-only F1 (%)

Näıve Bayes 73.1 (±3.2) 58.4 (±4.1)
Logistic Regression 73.9 (±3.5) 59.8 (±3.1)
XGBoost 78.1 (±2.2) 68.4 (±3.3)
Random Forest 81.4 (±3.7) 66.9 (±3.5)
SVM (proposed) 84.0 (±3.1) 69.2 (±3.6)

Runtime: Online RLS updates + SVM prediction
are sub-ms per time step on a laptop; training the
final SVM is modest. CIs use a stationary/block
bootstrap; paired tests via McNemar.

Deployment & Maintenance

RLS forgetting adapts short-term dynamics; un-
der concept drift, schedule periodic refresh or in-
cremental SVM updates (simple triggers: rolling
macro-F1 or calibration drift).

Climate Impact

Accurate, fast FDD for chillers reduces wasted en-
ergy and GHG emissions, and the same hybrid
recipe extends to AHUs/FCUs for broader building
impact.
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