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* The lack of fine-scale environmental inputs, such as high-resolution rainfall Observe (Inputs) Forecast (Targets)

Training Approaches

data, makes it difficult to predict flooding water depths at short time intervals —e—o——{—o—o—o— —e—o—] > Time
needed for applications like transportation decision support. R 15 030 0
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* We address this limitation by using the Fourier Neural Operator (FNO) to

learn complex spatiotemporal flood dynamics and produce high-frequency, farget Aware . o —o—o
temporal super-resolution predictions. Half Hourly
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Figure 3. Training configurations with different temporal resolutions. Solid circles
show timesteps used in both input and target data during training, and open circles
show target timesteps used during testing.

Table II: Performance on the test data across k-fold models.

Model MAE (m) RMSE (m) R?
High-resolution 0.007 0.017 0.971
Target-aware 0.008 0.017 0.971
Half Hourly 0.015 0.026 0.930
Hourly + 1st timestep 0.018 0.031 0.905
Hourly 0.028 0.046 0.791

* The fine-resolution model shows highest accuracy while accuracy decreases as training
data become coarser.
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Figure 1. The map displays Norfolk, Virginia and the selected study area within the i" ar _’
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Figure 4: True vs. predicted water depth for different training temporal resolution approaches.

“ * Predicted and observed values align closely for all approaches; the hourly model shows slight

 The physics-based model TUFLOW simulated water depth and observed underprediction but most points remain near the ideal line.

rainfall interpolation with a spatial resolution of 10m x 10m and 15 minutes Categorical Results High Water Depth
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 Digital Elevation Model (DEM) with a 10m x 10m spatial resolution 5. D3 oy
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Table I: Rainfall events and their duration in days. ,—E g
Date ((mm/dd/yyyy) Rainfall ((days) Surge (m) Daily Precipitation (in) Scenario S2
08/29/2017 5 1.17 3.93 Compound N
09/19/2020 5 1.13 3.60 Compound
11/13/2020 4 0.83 4.96 Heavy rain . - - - 0 02 02 06 Y
01/03/2022 5 1.34 1.68 ngh Surge - Water bepth - Water Depth (m)
09/3072022 4 1.25 3.40 High surge Figure 5: F1 score on test data for Figure 6. Test data distribution plot
three water depth categories. of water depth higher than (0.3m.
Data Pre-processing: * Performance is evaluated for three different water depth categories: shallow (<0.1m),
* The study area consists of 125 x 125 cell grid moderate (0.1-0.3m) and high water depth (>0.3m).
* The grid 1s divided into 50 x 50 patches using a sliding window of 25 cells litative Perf
in both directions, resulting in 16 patches per flood event t41 Qualitative Pe ormancet+4
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* Five flood events are used: four for training and validation with k-fold cross- 0 0 0 0s B
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—> FT - R > IFT Figure 7: Visual Performance with different training approaches.
e . —(O— * Visual results show consistent performance between predictions and ground truth across all
il training approaches.

Figure 2: The model architecture consists of four Fourier Neural Operator (FNO) Ackn OWledg ments

layers. Ny and Np denote the input and output temporal resolutions, respectively.
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