
• The lack of fine-scale environmental inputs, such as high-resolution rainfall 

data, makes it difficult to predict flooding water depths at short time intervals 

needed for applications like transportation decision support.

• We address this limitation by using the Fourier Neural Operator (FNO) to 

learn complex spatiotemporal flood dynamics and produce high-frequency, 

temporal super-resolution predictions.

Figure 1: The map displays Norfolk, Virginia and the selected study area within the 

Hague community which is highlighted by the red box in the upper right. 
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Table I: Rainfall events and their duration in days.

• The physics-based model TUFLOW simulated water depth and observed 

rainfall interpolation with a spatial resolution of 10m x 10m and 15 minutes 

temporal resolution

• Digital Elevation Model (DEM) with a 10m x 10m spatial resolution

Target: Water depth maps with fine temporal resolution
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Data Pre-processing:

• The study area consists of 125 x 125 cell grid

• The grid is divided into 50 x 50 patches using a sliding window of 25 cells 

in both directions, resulting in 16 patches per flood event

• Five flood events are used: four for training and validation with k-fold cross-

validation and fifth event is reserved for testing

Figure 2: The model architecture consists of four Fourier Neural Operator (FNO) 

layers. NT  and NP denote the input and output temporal resolutions, respectively.

Figure 3: Training configurations with different temporal resolutions. Solid circles 

show timesteps used in both input and target data during training, and open circles 

show target timesteps used during testing.
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Table II: Performance on the test data across k-fold models.

Figure 4: True vs. predicted water depth for different training temporal resolution approaches.

Figure 5: F1 score on test data for 

three water depth categories.

Figure 6: Test data distribution plot 

of water depth higher than 0.3m.
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Figure 7: Visual Performance with different training approaches.

•  The fine-resolution model shows highest accuracy while accuracy decreases as training 

data become coarser.
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• Predicted and observed values align closely for all approaches; the hourly model shows slight 

underprediction but most points remain near the ideal line.

• Performance is evaluated for three different water depth categories: shallow (<0.1m), 

moderate (0.1-0.3m) and high water depth (>0.3m).

• Visual results show consistent performance between predictions and ground truth across all 

training approaches.
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