
Revisiting Deep AC-OPF

Introduction

AC optimal power flow (AC-OPF) is a constrained optimization problem, 
fundamental to the operation of electrical power grids. The objective of AC-
OPF is to minimise the cost of generating real electrical power while 
satisfying physical and operational constraints. Conventional solvers for this 
problem can be prohibitively slow especially given increased variability from 
renewable generation. This has motivated extensive research on machine 
learning (ML) approaches to solving or accelerating the solving of AC-
OPF[1,2]. In this work we present the following:

We evaluated on 2 synthetic datasets based on the IEEE-30 and IEEE-118 
grids. Generated by taking the nominal loading scenario and sampling 
random variations around that nominal loading scenario. We consider a 
±50% variation from the nominal load case at each node. In this poster we 
present results from the 118 node case.

• Implementation of a transformer-based model, OPFormer-V,  
• Comparison of OPFormer-V against DeepOPF-V (FCNN)  
• Comparison of both architectures against relatively simple models and 

an observation of the surprisingly high performance achieved by simple 
linear models

Experiments & Results

Model Architecture

OPFormer-V is a transformer-based model that treats an N-bus grid as a 
sequence of N tokens, each encoding node-level features. The tokens are 
passed through a transformer encoder. The encoder outputs are then 
concatenated and passed through a feedforward head to predict voltage 
magnitudes and angles at all buses. 

Conclusion and Future Works

We revisit machine learning approaches for solving AC optimal power flow 
(AC-OPF) and introduce OPFormer-V, a transformer-based model for 
predicting bus voltages. While OPFormer-V consistently outperforms the 
state-of-the-art DeepOPF-V in both regression and power metrics, our 
findings reveal that simple linear baselines—such as nodewise averaging 
and linear regression—can achieve comparable performance. This 
challenges the perceived superiority of complex ML models and 
underscores the importance of including strong linear baselines in future 
evaluations. Overall, attention-based models like OPFormer-V show 
promise, but the incremental gains over simpler methods suggest a need 
for more rigorous benchmarking in ML-based OPF research.

A table comparing the OPF solutions from DeepOPF-V and OPFormer-V (feats-8) on the test split on the IEEE case118 
datasets. Comparing the average relative gap from optimality, the rate of violation of generation limits, the average relative 

difference between ground truth load and the effective load derived using predicted voltage at both a grid level and at a 
nodal level for̸ = 0 loads.

Illustration of OPFormer-V Model Architecture
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Illustrative One-Line Diagram of the IEEE-118 Node Test Case [3]

Regression Metrics

Power Metrics

IEEE case 118 DeepOPF-V OPFormer-V
Relative Opt. Diff. (%) -0.618 ±0.012 -0.153 ±0.053
Abs. Relative Opt. Diff. (%) 1.713 ±0.018 0.323 ±0.045
Pg Violation Rate (%) 21.799 ±0.044 16.468 ±0.306
Qg Violation Rate (%) 12.605 ±0.114 11.771 ±0.742
Abs. Relative Tot. Pd err. (%) 1.242 ±0.012 0.245 ±0.035
Abs. Relative Tot. Qd err. (%) 1.472 ±0.006 0.241 ±0.011
Avg. Abs. Relative Nonzero Pd err. (%) 16.242 ±0.140 4.053 ±0.182
Avg. Abs. Relative Nonzero Qd err. (%) 17.648 ±0.252 4.934 ±0.112
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One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003

System Description:

118 buses
186 branches
91 load sides
54 thermal units


