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renewable generation. This has motivated extensive research on machine + e ADs. Relative Tot. Pd err. (%) 1.242 +0.012 0.245 £0.035
learning (ML) approaches to solving or accelerating the solving of AC- TTe ? iy oy el Abs. Relative Tot. Qd err. (%) 1.472 +0.006 0.241 +0.011
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lllustrative One-Line Diagram of the IEEE-118 Node Test Case [3]

Model Architecture Conclusion and Future Works
We evaluated on 2 synthetic datasets based on the IEEE-30 and IEEE-118
grids. Generated by taking the nominal loading scenario and sampling
random variations around that nominal loading scenario. We consider a
+50% variation from the nominal load case at each node. In this poster we

We revisit machine learning approaches for solving AC optimal power flow
(AC-OPF) and introduce OPFormer-V, a transformer-based model for

OPFormer-V is a transformer-based model that treats an N-bus grid as a
sequence of N tokens, each encoding node-level features. The tokens are

passed through a transformer encoder. The encoder outputs are then present results from the 118 node case. predicting bus voltages. While OPFormer-V consistently outperforms the
concatenated and passed through a feedforward head to predict voltage state-of-the-art DeepOPF-V in both regression and power metrics, our
magnitudes and angles at all buses. findings reveal that simple linear baselines—such as nodewise averaging
Regression Metrics and linear regression—can achieve comparable performance. This
FVU of Voltage Angle (V5) and Magnitude (Vi) - IEEE 118 Case challenges the perceived superiority of complex ML models and
Lle+01 — - K; underscores the importance of including strong linear baselines in future
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evaluations. Overall, attention-based models like OPFormer-V show
promise, but the incremental gains over simpler methods suggest a need
for more rigorous benchmarking in ML-based OPF research.
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