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Abstract

Recent work has proposed machine learning (ML) approaches as fast surrogates for
solving AC optimal power flow (AC-OPF), with claims of significant speed-ups and
high accuracy. In this paper, we revisit these claims through a systematic evaluation
of ML models against a set of simple yet carefully designed linear baselines. We
introduce OPFormer-V, a transformer-based model for predicting bus voltages,
and compare it to both the state-of-the-art DeepOPF-V model and simple linear
methods. Our findings reveal that, while OPFormer-V improves over DeepOPF-
V, the relative gains of the ML approaches considered are less pronounced than
expected. Simple linear baselines can achieve comparable performance. These
results highlight the importance of including strong linear baselines in future
evaluations.

1 Introduction

Reliable electricity distribution is a vital part of modern society. The growing efforts to decarbonize,
driven by climate change, demand greater electrification and integration of renewable sources such
as wind and solar. However, variability in renewable generation and dynamic demand increase
uncertainty, requiring grid operators to solve AC optimal power flow (AC-OPF) problems more
frequently. This has motivated extensive research on machine learning (ML) approaches for OPF
[Donti and Kolter, 2021, Donti et al., 2020, Huang et al., 2021, Donon et al., 2020, Owerko et al.,
2022].

ML-based OPF methods can be broadly categorized into direct and hybrid approaches [Falconer
and Mones, 2022]. Direct methods learn a mapping from grid parameters to OPF solutions, offering
substantial speedups [Falconer and Mones, 2020, Owerko et al., 2020, Hansen et al., 2023, Donti
et al., 2021, Liu et al., 2022, Huang et al., 2021]. In contrast, hybrid methods leverage predictions,
e.g. warm starts, dual variables, or reduced formulations, to accelerate conventional solvers [Robson
et al., 2019, Pham and Li, 2022, Falconer and Mones, 2022].

We focus on DeepOPF-V, a state-of-the-art direct method by Huang et al. [2021]. Unlike previous
works, DeepOPF-V predicts bus voltage magnitudes (Vm) and angles (Va), from which generator
outputs (Sg) are computed using the grid admittance (Ybus) and load (Sl). This formulation enforces
voltage bounds directly while other constraints are satisfied to the extent of prediction accuracy,
yielding strong empirical performance with high feasibility, low optimality gaps, and large speedups.

In this work, we introduce a transformer-based model, OPFormer-V, which predicts the same output.
OPFormer-V consistently outperforms DeepOPF-V across datasets, and we compare both ML models
against simpler baselines, finding that linear models achieve comparable performance.
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2 Background

2.1 Optimal power flow (OPF)

OPF is a constrained optimization problem that minimizes the generation cost subject to physical and
operational constraints. It can be viewed as an operator Φ(·) mapping loads Sl, admittance matrix
Y, objective f(·) and constraints CE , CI to generator setpoints Sg. Numerous OPF variants exist
depending on additional constraints; here, we focus on the economic dispatch formulation.

Concisely, OPF can be expressed as

min
z

f(x, z)

s.t. cEj (x, z) = 0 j = 1 . . .m

cIk(x, z) ≥ 0 k = 1 . . . n,

(1)

where x denotes the grid parameters and z optimization variables. CE represents the set of equality
constraints given by the power flow equations and CI represents the set of inequality constraints on
voltage magnitudes, thermal branch limits and generator ouptuts.

3 Related works

3.1 Direct & hybrid approaches

Early direct methods used GNNs to predict generation setpoints either in supervised [Owerko et al.,
2020] or unsupervised [Owerko et al., 2022] settings. Other works exploit graph duals [Hansen
et al., 2023], compare architectures [Falconer and Mones, 2020], or enforce feasibility with physics-
aware regularization [Liu et al., 2022]. DC3 [Donti et al., 2021] generalizes this idea by embedding
feasibility guarantees via differentiable procedures. DeepOPF-V [Huang et al., 2021] advanced the
field by predicting bus voltages, from which generator outputs are derived. Zhou et al. [2023] and
Liang and Zhao [2023] extend this work by employing the DeepOPF-V framework but training a
single model across flexible topologies and various grids respectively.

Hybrid approaches warm-start or simplify solvers by predicting primal/dual variables or non-binding
constraints. This ensures feasibility but is slower than direct methods. Examples include meta-
optimization for reduced OPF [Robson et al., 2019], GNN-based reduction [Pham and Li, 2022],
constraint prediction [Falconer and Mones, 2022], and solver emulation [Baker, 2022, Piloto et al.,
2024].

3.2 Linear power flow

The main source of AC-OPF non-convexity lies in the power flow equations. Linear approximations,
such as DC-OPF, are widely adopted for convex formulations. Variants incorporate reactive power
[Zhang et al., 2013], logarithmic voltage transforms [Li et al., 2018], or squared voltage variables
[Li et al., 2018]. A comparative study by Li et al. [2022] concluded that DC-OPF achieved the best
overall performance.

4 Datasets

For this work, we evaluated our methods on 2 synthetic self-generated datasets. These datasets are
based on the IEEE case 30 and IEEE case 118 grids, having 30 and 118 buses/nodes respectively
and generated following the common approach of taking the nominal load case of the format and
sampling random variations around that nominal loading scenario. We consider a ±50% variation
from the nominal load case at each node and perform latin hypercube sampling. This generates a
loading scenario that is then solved using MATPOWER [Zimmerman et al., 1997] and only scenarios
that converge to a solution are included in the dataset. The 30 bus and 118 bus datasets contain 100k
samples each. For all datasets, we employ a 60/15/25 train/val/test data split.
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5 Methods

5.1 Baselines

We consider three simple baseline predictors. Gridwise averaging uses the mean vtrain across
all nodes and samples, serving as a data-driven flat start; while it performs the worst for voltage
angles (since it assumes no power flow), it predicts magnitudes better than DC-OPF’s magnitude
assumption of 1.0pu. Nodewise averaging instead averages vtrain per node, producing fixed flows
between nodes and achieving regression performance comparable to DeepOPF-V (Figure 1, Tables 3,
4). Finally, linear regression trains 2N ordinary least squares models, one per node and variable,
mapping Sl to voltage magnitudes and angles.

5.2 Linear power flow

We study two linearized OPF variants that combine approximate power flow equations with a
conventional optimizer, ensuring that generator outputs and voltages remain within their bounds.
However, these values are no longer coupled via the actual power flow equations, so in order to test the
feasibility of the solution, we select a subset of these variables and solve for the remaining variables
using the power flow equations. DC-OPF employs standard assumptions (unit voltage magnitudes,
small-angle approximation, and zero line resistance) equivalent to a first-order Taylor expansion at the
flat start, yielding active power flows dependent only on angle differences. In contrast, the hot start
approach linearizes around nodewise average voltages, solved via CVXPY [Agrawal et al., 2018,
Diamond and Boyd, 2016], and models both active and reactive flows including losses as shown in
equations 2 - 5. The chosen reference minimizes expected truncation error, with bounds derived from
second-order moments of voltage magnitudes and angle differences as shown in equation 7. For
efficiency, we approximate the average nodal voltage over multiple loading scenarios as the nodal
voltage for the average loading scenario, an assumption justified by the bounded curvature of the
load–voltage mapping and the low variance in practical datasets as shown in equation 13.

5.3 ML approaches

DeepOPF-V [Huang et al., 2021] is an FCNN trained with an L2 loss to jointly predict bus voltage
magnitudes and angles. Although the original work includes a post-processing step to reduce generator
limit violations, from the reported results its effect was minimal, and so we do not implement this
post-processing for both ML approaches. DeepOPF-V achieved a near-optimal, near-feasible level
of performance, however, we found that this level of performance is achievable by simple nodewise
averaging (Figure 1, Tables 3, 4).

In this work, we introduce OPFormer-V, a transformer-based model that treats an N -bus grid
as a sequence of N tokens, each encoding node-level features. The encoder outputs are concate-
nated and passed through a feedforward head to predict all bus voltages. Unlike DeepOPF-V,
OPFormer-V can incorporate node-specific but sample-invariant features such as generator limits
(pmax

g,i , pmin
g,i , qmax

g,i , qmin
g,i ), generator costs (c1, c2), and shunt admittances (bsi, gsi).

Figure 1: A figure showing the FVU in predicting the voltage angle (Va) in rad and voltage magnitude
(Vm) in pu of the 7 different methods considered for the test split on the IEEE case 30 and case 118
grids. There are 2 variations of the OPFormer-V shown, feats-2 and feats-8
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6 Results & Discussion

We evaluated a range of baselines, DeepOPF-V, and our proposed OPFormer-V on multiple datasets
using both regression and power metrics. Regression metrics capture accuracy in predicting bus
voltages, while power metrics assess whether the resulting generator outputs align with AC-OPF and
satisfy constraints. These two views are complementary: improved regression performance does not
necessarily translate to an improved feasibility rate or optimal power flow. Figure 1 shows the FVU
for voltage magnitude and angle while tables 1 and 2 present the power metrics of DeepOPF-V and
OPFormer-V.

Table 1: A table comparing the OPF solutions from DeepOPF-V and OPFormer-V (feats-8) on the
test split on the IEEE case30 datasets. Comparing the average relative gap from optimality, the rate
of violation of generation limits, the average relative difference between ground truth load and the
effective load derived using predicted voltage at both a grid level and at a nodal level for ̸= 0 loads.

IEEE case30 DeepOPF-V OPFormer-V
Rel. Opt. Diff. (%) -0.025 ±0.082 0.087 ±0.095
Abs. Rel. Opt. Diff. (%) 2.427 ±0.023 0.150 ±0.050
Pg Violation Rate (%) 10.984 ±0.255 10.488 ±0.639
Qg Violation Rate (%) 14.932 ±0.418 16.629 ±1.392
Abs. Rel. Tot. Pd err. (%) 1.876 ±0.019 0.116 ±0.038
Abs. Rel. Tot. Qd err. (%) 2.151 ±0.029 0.144 ±0.014

Abs. Rel. P ̸=0
d err. (%) 22.270 ±0.138 2.251 ±0.208

Abs. Rel. Q ̸=0
d err. (%) 23.627 ±0.052 6.657 ±0.657

In terms of regression, OPFormer-V achieves the best overall performance, though simple linear
baselines such as Nodewise Averaging and Linear Regression are surprisingly competitive, in some
cases rivalling or outperforming DeepOPF-V. This suggests that for this data generation process,
relatively simple models can capture much of the predictive structure. When we examine the resulting

Table 2: A table comparing the OPF solutions from DeepOPF-V and OPFormer-V (feats-8) on the
test split on the IEEE case118 datasets. Comparing the average relative gap from optimality, the rate
of violation of generation limits, the average relative difference between ground truth load and the
effective load derived using predicted voltage at both a grid level and at a nodal level for ̸= 0 loads.

IEEE case118 DeepOPF-V OPFormer-V
Rel. Opt. Diff. (%) -0.618 ±0.012 -0.153 ±0.053
Abs. Rel. Opt. Diff. (%) 1.713 ±0.018 0.323 ±0.045
Pg Violation Rate (%) 21.799 ±0.044 16.468 ±0.306
Qg Violation Rate (%) 12.605 ±0.114 11.771 ±0.742
Abs. Rel. Tot. Pd err. (%) 1.242 ±0.012 0.245 ±0.035
Abs. Rel. Tot. Qd err. (%) 1.472 ±0.006 0.241 ±0.011

Abs. Rel. P ̸=0
d err. (%) 16.242 ±0.140 4.053 ±0.182

Abs. Rel. Q ̸=0
d err. (%) 17.648 ±0.252 4.934 ±0.112

power metrics of DeepOPF-V and OPFormer-V, we see that OPFormer-V consistently achieves lower
optimality gaps and reduced errors in effective load. The errors in the effective load reflect the load
satisfaction (0% error equals 100% satisfaction). We observed that the aggregate relative error was
lower than the average nodal relative error, with this difference being more significant for DeepOPF-V.
However, the improvements in voltage prediction did not translate into a proportional decrease in
the generator limit violation rate. Our observed generation limit violation rates are higher than
those reported in Huang et al. [2021], however, we believe this is because we consider a larger
load variation. Overall, OPFormer-V demonstrates strong performance across both regression and
power metrics, validating attention-based models as promising alternatives to FCNNs for AC-OPF.
Generation constraint violation could be further reduced with a post-processing procedure such as
that employed by Huang et al. [2021], however, this step is model agnostic and could be applied to
our baseline models as well. The competitive performance of linear baselines shows that the benefits
of the direct ML approaches considered are relatively incremental. Full regression and power metric
tables and additional model information are provided in the appendix.
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A Appendix

A.1 Hot-start linear power flow

Linearised power flow equations using Taylor series and reference point ṽ, δ̃.

pij = p̃ij + 2gij ṽi∆vi + sin
(
δ̃ij

) [
gij ṽiṽj∆δij − bijTvi,vj

]
− cos

(
δ̃ij

) [
gijTvi,vj + bij ṽiṽj∆δij

]
,

(2)

qij = q̃ij − 2bij ṽi∆vi − sin
(
δ̃ij

) [
bij ṽiṽj∆δij + gijTvi,vj

]
+cos

(
δ̃ij

) [
bijTvi,vj − gij ṽiṽj∆δij

]
,

(3)

Tvi,vj = ṽi∆vj + ṽj∆vi , (4)

∆xk
= xk − x̃k. (5)

Upper bound on MAE for hot-start linear power flow.

R (ζ) = gij∆
2
vi + |yij |

[
ζviζvj
2

cos
(
ζδij − ∠yij

)
∆2

δij − Λ sin
(
ζδij − ∠yij

)]
Λ = ζvi∆vj∆δij +∆viζvj∆δij ,

(6)

E [|R (ζ) |] ≤ |gij |E
[
∆2

vi

]
+ |yij |

[
v2ub
2

E
[
∆2

δij

]
+ E [|Λ|]ub

]
E [|Λ|]ub = vub

[(
E
[
∆2

vj

]
E
[
∆2

δij

]) 1
2

+
(
E
[
∆2

vi

]
E
[
∆2

δij

]) 1
2

]
.

(7)

For a first-order Taylor series approximation of a function the error in approximation is given by
the remainder term R (ζ) shown in equation 8 where ζ is a point that lies on the line between x and
reference point a and Hζ is the Hessian evaluated at point ζ.

R (ζ) =
1

2
(x− a)

T
Hζ (x− a) (8)

For active power flow from node i to node j this remainder term takes the form shown in equation 9.

R (ζ) = gij∆
2
vi + |yij |

[
ζviζvj
2

cos
(
ζδij − ∠yij

)
∆2

δij − Λ sin
(
ζδij − ∠yij

)]
Λ = ζvi∆vj∆δij +∆viζvj∆δij

(9)

An upper bound on the absolute value of the remainder can be formed by summing the absolute
values of individual terms as seen in equation 10

|R (ζ)| =
∣∣∣∣gij∆2

vi
+ |yij |

[
ζviζvj
2

cos
(
ζδij − ∠yij

)
∆2

δij − Λ sin
(
ζδij − ∠yij

)]∣∣∣∣
≤

∣∣gij∆2
vi

∣∣+ ∣∣∣∣yij ζviζvj2
cos

(
ζδij − ∠yij

)
∆2

δij

∣∣∣∣+ ∣∣yijΛ sin
(
ζδij − ∠yij

)∣∣
≤

∣∣gij∆2
vi

∣∣+ ∣∣∣∣yij ζviζvj2
∆2

δij

∣∣∣∣+ |yijΛ|

≤
∣∣gij∆2

vi

∣∣+ |yij |
[∣∣∣∣v2ub2 ∆2

δij

∣∣∣∣+ ∣∣vub∆vj∆δij

∣∣+ ∣∣vub∆vi∆δij

∣∣]
(10)

If we take the expectation of this upper bound on the remainder we get the first expression in equation
11. If we assume that vi, vj and δij are independent and symmetric then this expectation is minimised
by the mean values of vi, vj and δij . If we do not want to make this assumption we can use the
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Cauchy-Schwartz inequality to find and upper bound on this expectation which is minimised by the
mean.

E [|R (ζ) |ub] = |gij |E
[
∆2

vi

]
+ vub |yij |

vubE
[
∆2

δij

]
2

+ E
[∣∣∆vj∆δij

∣∣]+ E
[∣∣∆vi∆δij

∣∣]
≤ |gij |E

[
∆2

vi

]
+ vub |yij |

vubE
[
∆2

δij

]
2

+

√
E
[
∆2

vj

]
E
[
∆2

δij

]
+

√
E
[
∆2

vi

]
E
[
∆2

δij

]
(11)

A similar process can be done for reactive power flow to derive the bound show in equation 12 as bij
is typically much larger gij we can expect greater error in predicting reactive power flow than active
power flow.

E [|R (ζ) |ub] = |bij |E
[
∆2

vi

]
+ vub |yij |

vubE
[
∆2

δij

]
2

+ E
[∣∣∆vj∆δij

∣∣]+ E
[∣∣∆vi∆δij

∣∣]
≤ |bij |E

[
∆2

vi

]
+ vub |yij |

vubE
[
∆2

δij

]
2

+

√
E
[
∆2

vj

]
E
[
∆2

δij

]
+

√
E
[
∆2

vi

]
E
[
∆2

δij

]
(12)

A.1.1 Data efficient approximation

Consider the function f : Rn → R1 with a Hessian H that is bounded by M so that the absolute
values of the elements in H are less than the corresponding element in M, |H| ≤ M. If we
examine its Taylor expansion as shown in equation 13 where the reference point is the mean
of x we see that the absolute difference between the value of the function at the mean and the
mean of the function value over x is expressed in terms of the hessian of the function and the
covariance of x. These equations extend into the multivariate case the work shown in angryavian
[https://math.stackexchange.com/users/43949/angryavian] (Licensed under CC BY-SA 3.0).

f(x) = f(x̃) + Jx (x− x̃) +
1

2
(x− x̃)

T
Hζ (x− x̃)

f(x)− f(x̃) = Jx (x− x̃) +
1

2
(x− x̃)

T
Hζ (x− x̃)

E [f(x)]− f(x̃) = Jx (E [x]− x̃) +
1

2
Tr

(
HζE

[
(x− x̃) (x− x̃)

T
])

+
1

2
(E [x]− x̃)

T
Hζ (E [x]− x̃)

E [f(x)]− f (E [x]) =
1

2
Tr (HζΣx)

|E [f(x)]− f (E [x])| =
∣∣∣∣12Tr (HζΣx)

∣∣∣∣
≤ 1

2
Tr (|Hζ | |Σx|)

≤ 1

2
Tr (M |Σx|)

(13)

Numerically, for the self-generated 118 node case we observed, the mean absolute difference over all
nodes was 2.1217e− 4, 4.0167e− 4 for voltage magnitude and angle, respectively. Numerically,
for the self-generated 30 node case we observed, the mean absolute difference over all nodes was
4.5786e− 4, 9.8582e− 4 for voltage magnitude and angle, respectively.

A.1.2 Active power generation error comparison
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Figure 2: Sum Absolute Error in in active power
generation for all generators sorted by aggregate
active power demand for the self-generated 30
node case dataset. This figure compares this error
in DC-OPF and the hot-start linear power flow.
This figure shows error in DC-OPF approxima-
tion is typically worse than for hot-start and that
this error is dependent on aggregate demand and
generally worsens as we increase aggregate de-
mand, saturating at higher levels

Figure 3: Sum Absolute Error in in active power
generation for all generators sorted by aggregate
active power demand for the self-generated 118
node case dataset. This figure compares this error
in DC-OPF and the hot-start linear power flow.
This figure shows error in DC-OPF approxima-
tion is typically worse than for hot-start and that
this error is dependent on aggregate demand and
generally worsens as we increase aggregate de-
mand, saturating at higher levels

A.2 Regression metrics

Table 3: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and voltage
magnitude (Vm) in pu of the 7 different methods considered for the test split on the self-generated
dataset on the IEEE case 30 grid. There are 2 variations of the OPFormer-V shown, feats-2 takes a
2 dimensional vector of load (pl,i, ql,i) as input while feats-8 takes an eight dimensional vector of
load, shunt susceptance and generator information (pl,i, ql,i, bsi, p

max
g,i , qmax

g,i , qmin
g,i , c1, c2). For NN

methods we report the mean and standard deviation over 3 runs.

Method Va Vm

MSE FVU MSE FVU

DeepOPF-V 8.782× 10−6 2.280× 10−3 3.272× 10−6 9.169× 10−3

±5.3× 10−7 ±1.4× 10−4 ±1.2× 10−7 ±3.3× 10−4

OPFormer-V,
feats 2

2.402× 10−7 6.235× 10−5 3.976× 10−8 1.112× 10−4

±1.6× 10−7 ±4.1× 10−5 ±1.2× 10−8 ±3.5× 10−5

OPFormer-V,
feats 8

2.089× 10−7 5.421× 10−5 3.123× 10−8 8.731× 10−5

±8.4× 10−8 ±2.2× 10−5 ±4.3× 10−9 ±1.2× 10−5

Grid Avg. 3.853× 10−3 1.000× 10−0 3.577× 10−4 1.000× 10−0

Node Avg. 9.804× 10−5 2.545× 10−2 2.765× 10−5 7.731× 10−2

DC-OPF 1.932× 10−3 5.015× 10−1 9.493× 10−4 2.654× 10−0

Hot-Start PF 1.967× 10−5 5.105× 10−3 4.480× 10−5 1.252× 10−1

Linear 6.272× 10−6 1.628× 10−3 4.484× 10−7 1.254× 10−3
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Table 4: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and voltage
magnitude (Vm) in pu of the 7 different methods considered for the test split on the self-generated
dataset on the IEEE case 118 grid. There are 2 variations of the OPFormer-V shown, feats-2 takes a
2 dimensional vector of load (pl,i, ql,i) as input while feats-8 takes an eight dimensional vector of
load, shunt susceptance and generator information (pl,i, ql,i, bsi, p

max
g,i , qmax

g,i , qmin
g,i , c1, c2). For NN

methods we report the mean and standard deviation over 3 runs.

Method Va Vm

MSE FVU MSE FVU

DeepOPF-V 7.351× 10−5 1.090× 10−2 6.458× 10−6 4.129× 10−2

±4.4× 10−6 ±6.5× 10−4 ±9.5× 10−8 ±6.1× 10−4

OPFormer-V,
feats 2

1.921× 10−6 2.849× 10−4 8.545× 10−8 5.464× 10−4

±1.3× 10−7 ±1.9× 10−5 ±8.1× 10−9 ±5.2× 10−5

OPFormer-V,
feats 8

2.708× 10−6 4.016× 10−4 6.703× 10−8 4.286× 10−4

±3.2× 10−7 ±4.7× 10−5 ±5.4× 10−9 ±3.4× 10−5

Grid Avg. 6.743× 10−3 1.000× 10−0 1.564× 10−4 1.000× 10−0

Node Avg. 4.447× 10−4 6.595× 10−2 7.528× 10−6 4.814× 10−2

DC-OPF 4.575× 10−3 6.785× 10−1 1.795× 10−3 1.148× 10+1

Hot-Start PF 1.174× 10−3 1.741× 10−1 2.519× 10−3 1.611× 10+1

Linear 2.986× 10−6 4.428× 10−4 1.188× 10−7 7.596× 10−4

Table 5: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and voltage
magnitude (Vm) in pu of the different methods considered for the train split on the self-generated
dataset on the IEEE case 30 grid. There are 2 variations of the OPFormer-V shown, feats-2 takes a
2 dimensional vector of load (pl,i, ql,i) as input while feats-8 takes an eight dimensional vector of
load, shunt susceptance and generator information (pl,i, ql,i, bsi, p

max
g,i , qmax

g,i , qmin
g,i , c1, c2). For NN

methods we report the mean and standard deviation over 3 runs.

IEEE case30
(Train)

Va Vm

MSE FVU MSE FVU

DeepOPF-V (µ) 8.746×10−6 2.275×10−3 3.260×10−6 9.128×10−3

(σ) ±5.3× 10−7 ±1.4× 10−4 ±1.3× 10−7 ±3.5× 10−4

OPFormer-V
(feats 8)

(µ) 2.077×10−7 5.402×10−5 3.115×10−8 8.723×10−5

(σ) ±8.3× 10−8 ±2.2× 10−5 ±4.3× 10−9 ±1.2× 10−5

OPFormer-V
(feats 2)

(µ) 2.393×10−7 6.225×10−5 3.964×10−8 1.110×10−4

(σ) ±1.6× 10−7 ±4.1× 10−5 ±1.2× 10−8 ±3.5× 10−5

Grid Avg. 3.845×10−3 1.000×10−0 3.571×10−4 1.000×10−0

Node Avg. 9.768×10−5 2.540×10−2 2.726×10−5 7.633×10−2

DC-OPF 1.925×10−3 5.007×10−1 9.490×10−4 2.657×10−0

Linear 6.328×10−6 1.646×10−3 4.464×10−7 1.250×10−3

GP 1.225×10−17 3.186×10−15 4.082×10−11 1.143×10−7

Hot-Start 1.899×10−5 4.939×10−3 4.484×10−5 1.256×10−1
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Table 6: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and voltage
magnitude (Vm) in pu of the different methods considered for the validation split on the self-generated
dataset on the IEEE case 30 grid. There are 2 variations of the OPFormer-V shown, feats-2 takes a
2 dimensional vector of load (pl,i, ql,i) as input while feats-8 takes an eight dimensional vector of
load, shunt susceptance and generator information (pl,i, ql,i, bsi, p

max
g,i , qmax

g,i , qmin
g,i , c1, c2). For NN

methods we report the mean and standard deviation over 3 runs.

IEEE case30
(Val.)

Va Vm

MSE FVU MSE FVU

DeepOPF-V (µ) 8.778×10−6 2.282×10−3 3.281×10−6 9.204×10−3

(σ) ±5.3× 10−7 ±1.4× 10−4 ±1.2× 10−7 ±3.5× 10−4

OPFormer-V
(feats 8)

(µ) 2.139×10−7 5.560×10−5 3.208×10−8 9.001×10−5

(σ) ±8.5× 10−8 ±2.2× 10−5 ±4.4× 10−9 ±1.2× 10−5

OPFormer-V
(feats 2)

(µ) 2.413×10−7 6.272×10−5 4.036×10−8 1.132×10−4

(σ) ±1.6× 10−7 ±4.0× 10−5 ±1.3× 10−8 ±3.6× 10−5

Grid Avg. 3.847×10−3 1.000×10−0 3.564×10−4 1.000×10−0

Node Avg. 9.799×10−5 2.547×10−2 2.735×10−5 7.674×10−2

DC-OPF 1.915×10−3 4.977×10−1 9.504×10−4 2.666×10−0

Linear 6.538×10−6 1.700×10−3 4.604×10−7 1.292×10−3

GP 1.200×10−6 3.118×10−4 1.002×10−7 2.811×10−4

Hot-Start 1.900×10−5 4.939×10−3 4.446×10−5 1.247×10−1

Table 7: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad
and voltage magnitude (Vm) in pu of the different methods considered for the train split on
the self-generated dataset on the IEEE case 118 grid. The OPFormer-V variation considered
feats-8 takes an eight dimensional vector of load, shunt susceptance and generator information
(pl,i, ql,i, bsi, p

max
g,i , qmax

g,i , qmin
g,i , c1, c2). For NN methods we report the mean and standard deviation

over 3 runs.

IEEE case118
(Train)

Va Vm

MSE FVU MSE FVU

DeepOPF-V (µ) 7.374×10−5 1.093×10−2 6.473×10−6 4.140×10−2

(σ) ±4.3× 10−6 ±6.4× 10−4 ±9.7× 10−8 ±6.2× 10−4

OPFormer-V
(feats 8)

(µ) 2.661×10−6 3.943×10−4 6.570×10−8 4.202×10−4

(σ) ±3.1× 10−7 ±4.7× 10−5 ±5.4× 10−9 ±3.4× 10−5

Grid Avg. 6.749×10−3 1.000×10−0 1.563×10−4 1.000×10−0

Node Avg. 4.428×10−4 6.560×10−2 7.550×10−6 4.829×10−2

DC-OPF 4.573×10−3 6.775×10−1 1.795×10−3 1.148×10+1

Linear 2.948×10−6 4.368×10−4 1.178×10−7 7.534×10−4

GP 6.290×10−6 9.320×10−4 2.595×10−7 1.660×10−3

Hot-Start 1.172×10−3 1.737×10−1 2.526×10−3 1.616×10+1

A.3 Power metrics

For the linear power flow methods full AC-OPF solutions were also generated by using predicted
voltages in the power flow equations, hence the violation in generation. An alternative approach
could use predicted generator output and automatically satisfy generation constraints, but result in
potential voltage violations.
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Table 8: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and
voltage magnitude (Vm) in pu of the different methods considered for the validation split on
the self-generated dataset on the IEEE case 118 grid. The OPFormer-V variation considered
feats-8 takes an eight dimensional vector of load, shunt susceptance and generator information
(pl,i, ql,i, bsi, p

max
g,i , qmax

g,i , qmin
g,i , c1, c2). For NN methods we report the mean and standard deviation

over 3 runs.

IEEE case118
(Val.)

Va Vm

MSE FVU MSE FVU

DeepOPF-V (µ) 7.326×10−5 1.085×10−2 6.465×10−6 4.133×10−2

(σ) ±4.1× 10−6 ±6.1× 10−4 ±9.4× 10−8 ±6.0× 10−4

OPFormer-V
(feats 8)

(µ) 2.774×10−6 4.110×10−4 6.755×10−8 4.319×10−4

(σ) ±3.1× 10−7 ±4.5× 10−5 ±5.7× 10−9 ±3.6× 10−5

Grid Avg. 6.750×10−3 1.000×10−0 1.564×10−4 1.000×10−0

Node Avg. 4.445×10−4 6.585×10−2 7.541×10−6 4.821×10−2

DC-OPF 4.540×10−3 6.726×10−1 1.795×10−3 1.147×10+1

Linear 3.049×10−6 4.516×10−4 1.191×10−7 7.612×10−4

GP 8.556×10−6 1.267×10−3 3.804×10−7 2.432×10−3

Hot-Start 1.196×10−3 1.772×10−1 2.526×10−3 1.615×10+1

Table 9: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and voltage
magnitude (Vm) in pu for the different methods considered on the train split on the OPF-Learn case 30
dataset. The OPFormer-V variation considered feats-2 takes a 2 dimensional vector of load (pl,i, ql,i)
as input. For NN methods we report the mean and standard deviation over 3 runs.

OPF-Learn case30
(Train)

Va Vm

MSE FVU MSE FVU

DeepOPF-V (µ) 4.227×10−7 1.368×10−1 2.384×10−4 2.762×10−1

(σ) ±2.3× 10−12 ±7.4× 10−7 ±2.0× 10−9 ±2.3× 10−6

OPFormer-V
(feats 2)

(µ) 3.388×10−7 1.096×10−1 2.194×10−4 2.541×10−1

(σ) ±7.2× 10−8 ±2.3× 10−2 ±1.7× 10−5 ±2.0× 10−2

Grid Avg. 3.091×10−6 1.000×10−0 8.632×10−4 1.000×10−0

Node Avg. 4.227×10−7 1.368×10−1 2.384×10−4 2.762×10−1

Linear 6.426×10−9 2.079×10−3 3.350×10−5 3.881×10−2

GP 5.099×10−9 1.650×10−3 2.170×10−5 2.514×10−2

Table 10: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and voltage
magnitude (Vm) in pu for the different methods considered on the validation split on the OPF-Learn
case 30 dataset. The OPFormer-V variation considered feats-2 takes a 2 dimensional vector of load
(pl,i, ql,i) as input. For NN methods we report the mean and standard deviation over 3 runs.

OPF-Learn case30
(Val.)

Va Vm

MSE FVU MSE FVU

DeepOPF-V (µ) 4.278×10−7 1.374×10−1 2.468×10−4 2.831×10−1

(σ) ±4.0× 10−12 ±1.3× 10−6 ±4.3× 10−9 ±4.9× 10−6

OPFormer-V
(feats 2)

(µ) 3.412×10−7 1.096×10−1 2.268×10−4 2.602×10−1

(σ) ±7.4× 10−8 ±2.4× 10−2 ±1.8× 10−5 ±2.1× 10−2

Grid Avg. 3.115×10−6 1.000×10−0 8.715×10−4 1.000×10−0

Node Avg. 4.278×10−7 1.374×10−1 2.468×10−4 2.831×10−1

Linear 6.617×10−9 2.124×10−3 3.336×10−5 3.828×10−2

GP 6.680×10−9 2.145×10−3 3.431×10−5 3.937×10−2
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Table 11: A table showing the MSE and FVU in predicting the voltage angle (Va) in rad and voltage
magnitude (Vm) in pu for the different methods considered on the test split on the OPF-Learn case 30
dataset. The OPFormer-V variation considered feats-2 takes a 2 dimensional vector of load (pl,i, ql,i)
as input. For NN methods we report the mean and standard deviation over 3 runs.

OPF-Learn case30
(Test)

Va Vm

MSE FVU MSE FVU

DeepOPF-V (µ) 4.334× 10−7 1.393× 10−1 2.396× 10−4 2.750× 10−1

(σ) ±5.8× 10−12 ±1.9× 10−6 ±1.3× 10−9 ±1.5× 10−6

OPFormer-V
(feats 2)

(µ) 3.458× 10−7 1.112× 10−1 2.205× 10−4 2.530× 10−1

(σ) ±7.6× 10−8 ±2.4× 10−2 ±1.7× 10−5 ±2.0× 10−2

Grid Avg. 3.111× 10−6 1.000× 100 8.715× 10−4 1.000× 100

Node Avg. 4.334× 10−7 1.393× 10−1 2.396× 10−4 2.749× 10−1

Linear 7.404× 10−9 2.380× 10−3 3.475× 10−5 3.987× 10−2

GP 7.555× 10−9 2.428× 10−3 3.532× 10−5 4.053× 10−2

Table 12: A table comparing the quality of the OPF solutions from the predictions of the other
methods considered on the test split on the IEEE case30 datasets. Predictions are assessed on the
relative gap from optimality, the rate of violation of generation limits, the relative difference between
load in the ground truth and effective load derived using predicted voltage for both a grid aggregation
and at a nodal level for ̸= 0 loads.

IEEE case30 Grid Node DC-OPF OLS GP Hot-Start
Rel. Opt. Diff. (%) 37.373 -0.327 6.383 0.005 -0.002 -0.033
Abs. Rel. Opt. Diff. (%) 37.373 4.271 6.383 0.029 0.087 0.143
Pg Violation Rate (%) 23.967 4.467 2.097 9.097 11.323 7.796
Qg Violation Rate (%) 17.949 24.149 32.979 15.222 13.606 28.670
Abs. Rel. Tot. Pd (%) 48.987 3.284 5.931 0.018 0.066 0.122
Abs. Rel. Tot. Qd (%) 22.308 3.892 73.524 0.088 0.067 0.912
Abs. Rel. P ̸=0

d (%) 85.714 24.660 29.461 0.197 0.242 0.258
Abs. Rel. Q ̸=0

d (%) 248.173 24.760 431.436 0.326 0.309 1.733

Table 13: A table comparing the quality of the OPF solutions from the predictions of the other
methods considered on the test split on the IEEE case118 datasets. Predictions are assessed on the
relative gap from optimality, the rate of violation of generation limits, the relative difference between
load in the ground truth and effective load derived using predicted voltage for both a grid aggregation
and at a nodal level for ̸= 0 loads.

IEEE case30 Grid Node DC-OPF OLS GP Hot-Start
Rel. Opt. Diff. (%) 14.904 -0.831 2.057 0.002 -0.107 -0.378
Abs. Rel. Opt. Diff. (%) 14.904 1.772 2.057 0.012 2.212 0.382
Pg Violation Rate (%) 16.953 21.645 4.221 15.201 16.509 14.025
Qg Violation Rate (%) 14.437 13.263 27.334 10.691 11.914 28.673
Abs. Rel. Tot. Pd (%) 33.798 1.254 2.186 0.009 1.673 0.381
Abs. Rel. Tot. Qd (%) 26.182 1.472 60.329 0.088 1.715 1.548
Abs. Rel. P̸=0

d (%) 54.545 15.707 6.520 0.100 3.171 1.383
Abs. Rel. Q̸=0

d (%) 90.601 17.028 149.715 0.467 5.175 4.328
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A.4 Additional experiment Information

A.4.1 Transformer

:

• input size: 8 or 2
• num. layers: 7
• num. transformer encoder layers: 4
• dim. ff: 512
• num. attn. heads: 4
• c hidden: 16
• c out: 2 * (num. nodes)
• dropout rate: 0.1
• num. parameters: ∼104k (30 nodes), 574k (118 nodes)

A.4.2 MLP

:

• input size: 2 * (num. nonzero load nodes)
• num. layers: 8
• c hidden: 256 (for 30 nodes), 1024 (for 118 nodes)
• c out: 2 * (num. nodes)
• dropout rate: 0.1
• num. parameters: ∼359k (30 nodes), 5.7M (118 nodes)

A.4.3 Optimizer details

• optimizer: SGD
• learning rate: 1e-3
• weight decay: 2e-6
• momentum: 0.9
• lr scheduler: Cosine Annealing
• num. epochs: 200

A.4.4 Compute resources & approximate run times

Models trained on CPU (Apple M1 Pro Chip). For the 30 node case approximate train time of 2
hours and the 118 node case approximate train time of 5 hours. OPFLearn case30 approximate train
time of 0.5 hours.
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A.4.5 Speed-ups, MAC & approximate parameter count

In Tables 14 and 15, we report speed-ups, multiply–accumulate operations (MAC), and parameter
counts observed in our experiments. Note that the AC-OPF solver was run on online resources
(MATLAB Online), while ML models were trained on a CPU (Apple M1 Pro, 16GB RAM).

Metric DeepOPF-V OPFormer-V (feats 2)
MAC 5.351M 441K
Parameter Count 5.357M 43.2K
Approx. Speedup ×446 ×717

Table 14: Estimated MAC, parameter count, and speedup of DeepOPF-V and OPFormer-V (feats 2)
on the 30-node case.

Metric DeepOPF-V OPFormer-V (feats 2)
MAC 5.743M 2.891M
Parameter Count 5.750M 449K
Approx. Speedup ×553 ×257

Table 15: Estimated MAC, parameter count, and speedup of DeepOPF-V and OPFormer-V (feats 2)
on the 118-node case.
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