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Background

Parametric sensitivity in ocean modeling
• Lower-resolution ocean models depend on uncertain parameterizations.
• Model sensitivity to these parameters is difficult to quantify.
• Manual tuning to match observations is computationally prohibitive.

Neural network surrogates offer a promising alternative.
• Deep learning surrogates can efficiently approximate model responses and

parametric sensitivities via automatic differentiation.
• However, their reliability is unclear due to the lack of ground truth derivatives to

regulate training.
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Proposed Method

Deep ensemble framework

• Large-scale
hyperparameter
search for ensemble
construction

• Ensemble
aggregation for
improved forward
prediction and
sensitivity
estimation

…

xt, κ

FNO y(1)

J(·)
...

…
yensemble, ∂J

∂κ

ensemble

∂J
∂κ

(1)

FNO y(K)

J(·)
∂J
∂κ

(K)

Overview of deep ensemble of Fourier Neural Operators (FNOs) for ocean parametric sensitivity. We train
individual models with diverse hyperparameters to produce time-stepping predictions and parametric
sensitivities. We aggregate these outputs to produce ensemble predictions of future ocean states and
estimates of the partial derivative of objective J w.r.t. the parameterization κ.
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Improved Forward Prediction Performance

• We build an ensemble of neural
surrogates from large-scale
hyperparameter optimization (HPO)
using DeepHyper.

• Ensembles are formed with two
weighting schemes: uniform and
learned weights.

• Both ensemble types outperform the
baseline and best single model
across all five ocean states.
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RMSE (↓) of single step forward predictions.

Constant Pred. Baseline Top-1 Top10 Ensemble Top10 Ensemble (weighted)

Layer Thickness 0.0004 0.0011 0.0008 0.0004 0.0004
Zonal V. 0.0122 0.0022 0.0024 0.0016 0.0016

Meridional V. 0.0075 0.0024 0.0019 0.0013 0.0013
Temp. 0.3876 0.0494 0.0484 0.0385 0.0392
Salinity 0.0072 0.0026 0.0024 0.0018 0.0017 4 / 6



Improved Derivative Estimates and Stability

• Ensembles yield more stable
autoregressive rollouts across all
ocean states.

• Provide epistemic uncertainty in both
function and derivative predictions.

• Show that accuracy in forward
prediction does not guarantee
accuracy in derivatives.

• Linearizing validates the ensembles
yield better derivative estimates while
maintaining lowest forward errors.
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Key Takeaways

• Proposed a deep ensemble framework for improved parametric sensitivity
estimation in ocean models.

• Built ensembles from top-performing HPO models using two weighting
strategies.

• Evaluated on single-step prediction, long-range rollout, and sensitivity estimation
tasks.

• Outperformed both baseline and best single models across all evaluations.

• Provided uncertainty quantification alongside accurate predictions and
sensitivities.

Future work: extend to multiple parameterizations and validate sensitivities via
numerical differentiation or data assimilation.
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