
Ensembles of Neural Surrogates for 
Parametric Sensitivity in Ocean Modeling

Motivation
Ocean simulations at lower resolutions must rely on various uncertain 
parameterizations to account for unresolved processes. However, model 
sensitivity to parameterizations is difficult to quantify, making it challenging to 
tune these parameterizations to reproduce observations. Deep learning 
surrogates have shown promise for efficient computation of the parametric 
sensitivities in the form of partial derivatives, but their reliability is difficult to 
evaluate without ground truth derivatives. We propose an ensemble learning 
framework to improve both the function value predictions and its derivative 
estimates.

Ocean State Forecasting
We build an ensemble of neural surrogates constructed from a large-scale 
hyperparameter optimization (HPO) using DeepHyper. The ensemble 
improves both the forward prediction performance and derivative estimates. 
• Form ensembles with two weighting schemes using the top models from 

the HPO. 
• Improve the forward single-stepping predictions compared to the baseline 

model and best model from the HPO for all five ocean states investigated. 

Conclusion
• Improves both forward predictions and derivative estimates without 

requiring ground truth sensitivities. 
• Potentially enables systematic exploration and calibration of 

parameterizations in low-resolution ocean simulations. 
• Promise to helps reduce biases in parameterized eddy effects, improving 

the fidelity of large-scale ocean and climate models. 
• Accelerates the optimization and calibration workflow, making it easier to 

align simulations with observations. 
• Provides a generalizable framework for constructing neural surrogates 

that are consistent in both function and derivative estimation. 
• Enhances the trustworthiness of machine learning–based emulators for 

scientific discovery and policy-relevant climate projections. 

Time averaged model estimated sensitivity of  calculated using the temperature fields to .J κ

Hyperparameter search trajectory. Starting with the baseline configuration, the search 
balances the exploration and exploitation which leads to increasingly better models depicted 

by the solid black line. The number of high performing models increases accordingly.
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• Such superior accuracy in the single-stepping predictions results in more 
stable autoregressive rollouts for all five ocean states. 

• Provides epistemic uncertainty of function value predictions and their 
derivatives, improving reliability of the neural surrogates in decision 
making. 
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Table 1: RMSE (→) of single step forward predictions.

Constant Pred. Baseline Top-1 Top10 Ensemble

Layer Thickness 0.0004 0.0011 0.0008 0.0004
Zonal V. 0.0122 0.0022 0.0024 0.0016

Meridional V. 0.0075 0.0024 0.0019 0.0013
Temp. 0.3876 0.0494 0.0484 0.0385
Salinity 0.0072 0.0026 0.0024 0.0018

Autoregressive rollout performance comparisons among the three models. The curves are the spatially averaged 
ocean states for 8 years. For the baseline model, the forecasts quickly diverge from the true state due to error 

accumulation, whereas the ensembles generate stable prediction for all ocean states.

Parametric Sensitivity

RMSE of the temperature predictions from linearized models.  We indirectly validate the 
estimated sensitivity using the linearized models to make predictions for nearby points. We 
expect the model having a better sensitivity estimation to produce a more accurate linear 

model.

Best

Baseline Ensemble (uni. w.) Ensemble (lrn. w.)

• Demonstrate that a model accurate for forward function values may still 
be inaccurate in its derivative estimates. 

• Through linearization, the ensemble framework shows a better estimated 
first order derivatives compared to the best single model from the HPO, 
while maintaining the lowest errors in forward predictions. 

Future Directions
• Extend the framework to multiple parameterizations, allowing 

simultaneous treatment of several parameterizations determining the 
ocean dynamics at mesoscales. 

• Evaluate sensitivities via numerical differentiation of the physical model, 
providing a reference to validate neural surrogate–based derivatives in 
the absence of analytic ground truth. 

• Incorporate data assimilation approaches to integrate observational 
constraints, further refining both forward predictions and sensitivity 
estimates. 

• Broaden applicability beyond ocean modeling, exploring the use of this 
framework in other climate and Earth system components where 
parameterization uncertainties are significant. 


