Ensembles of Neural Surrogates for Parametric
Sensitivity in Ocean Modeling

Yixuan Sun Romain Egele
Argonne National Laboratory Oak Ridge National Laboratory
yixuan.sun@anl.gov regele@ornl.gov
Sri Hari Krishna Narayanan Luke Van Roekel Carmelo Gonzales
Argonne National Laboratory =~ Los Alamos National Laboratory NVIDIA
snarayan@anl.gov lvanroekel@lanl.gov carmelog@nvidia.com
Steven Brus Balu Nadiga
Argonne National Laboratory Los Alamos National Laboratory
sbrus@anl.gov balu@lanl.gov
Sandeep Madireddy Prasanna Balaprakash
Argonne National Laboratory Oak Ridge National Laboratory
smadireddy@anl.gov pbalapra@ornl.gov
Abstract

Accurate simulations of the oceans are crucial in understanding the Earth system.
Despite their efficiency, simulations at lower resolutions must rely on various
uncertain parameterizations to account for unresolved processes. However, model
sensitivity to parameterizations is difficult to quantify, making it challenging to tune
these parameterizations to reproduce observations. Deep learning surrogates have
shown promise for efficient computation of the parametric sensitivities in the form
of partial derivatives, but their reliability is difficult to evaluate without ground
truth derivatives. In this work, we leverage large-scale hyperparameter search and
ensemble learning to improve both forward predictions, autoregressive rollout,
and backward adjoint sensitivity estimation. Particularly, the ensemble method
provides epistemic uncertainty of function value predictions and their derivatives,
providing improved reliability of the neural surrogates in decision making.

1 Introduction

The ocean is a vast reservoir of heat and plays a significant role in redistributing heat from the
equatorial regions to the poles. Accurate simulation of this heat transport requires resolution of
smaller scale ocean eddies [1]]. While various ocean models have been constructed to model these
complex dynamics [2H4]], at lower resolution, these critical eddies must be modeled separately using
a parametrization. Commonly, small scale eddies are modeled to remove baroclinic instability and
also transport tracers along constant density layers [5}/6]. At smaller scales, vertical turbulent mixing
is modeled as a down gradient process [[7]]. On the larger scale ocean, the effect of parameterizations
is poorly understood, making it challenging to optimize uncertain model parameters to better match
observations [8}[9]]. Therefore, it is crucial to understand the model parametric sensitivity to effectively
perform tuning to minimize model bias relative to observations. However, the existing physics-
based ocean model codes are often too computationally expensive and not readily differentiable to
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Figure 1: Overview of deep ensemble of Fourier Neural Operators (FNOs) for ocean parametric
sensitivity. We train individual models with diverse hyperparameters to produce time-stepping
predictions and parametric sensitivities. We aggregate these outputs to produce ensemble predictions
of future ocean states and estimates of the partial derivative of objective J w.r.t. the parameterization
K.

support perturbation analysis or automatic differentiation [[10]. Alternatively, neural surrogates have
emerged [11H14]], which can approximate the parametric sensitivity inexpensively by differentiating
the trained networks [[15,[16]. However, without ground truth derivatives to constrain the training,
such as in [17], the estimated derivatives can deviate substantially from the true values, even when
the network accurately reproduces the forward process. We propose to alleviate this issue through an
ensemble of neural surrogates constructed from a large-scale hyperparameter optimization (HPO),
as illustrated in Figure [l The ensemble improves both the forward prediction performance and
derivative estimates, which enables more stable autoregressive rollouts of the ocean states for long-
term forecasts. Moreover, the neural surrogate ensemble provides quantified epistemic uncertainty,
providing detailed reliability information for decision-making.

2 Neural Surrogate and Deep Ensemble

The target neural network surrogate model, M (+; #), approximates the true physical model, M (x, k).
Here x and & are the current ocean states and physical parameter of interest, and 6 is set of the
neural network parameters (including trainable parameters and architecture choices). We also aim
to estimate the parametric sensitivity of a model-dependent objective function J by computing its
derivative w.r.t. the parameterization, % = Vmd %—/‘: Specifically, for given training data set
Dirain = { (X4, ki), yi}f\il, generated from the true physical process y, = M(x;, k;), where y
represents the ocean states at a future time, and N is the number of input-output pairs. We train the
neural network, NV, such that M (x;, x;;60) = y,; by minimizing the loss function £(8; Diyain) =
oM

LSV ly® — No(x@, k)13, and use 2 as the estimate of the parametric sensitivity.

We select the ensemble members from the results of a large-scale HPO, where the mapping between
the hyperparameters and model performance is treated as a black-box function, F' = h(A),\ € A. F
is the objective function, and A denotes the hyperparameter search space of which a point defines the
data preprocessing, neural architectures, and training strategies. We simply use the validation loss
as the search objective to be minimized, F* = ming £(6; Dy, ). During the search, we model the
relationship using a tree-based surrogate, h, from the current known hyperparameter set and objective
pairs, (\;, F}), s.t. F; = h();), and perform centralized Bayesian optimization to select the next best
evaluation point that can potentially lead to the global optimum [18]. Once the HPO has completed,
we then select K top-performing models as the ensemble members.

Let My(x, k;0)) denote the kth member of the ensemble parameterized by 0. The ensemble

prediction of the ocean states are y ., = Zszl wg My (%, K, 0), ), where wy, is the weight associated
with the kth member of the ensemble. Then the model uncertainty is expressed as the empirical

distribution variance, 02 = >","_; wi (Y1 — Yens)?.

'The total derivative equals the partial derivative with respect to & in this case, as the current state x is
assumed to be independent of k.



Table 1: RMSE () of single step forward predictions.
Constant Pred. Baseline Top-1 Topl0 Ensemble Topl10 Ensemble (weighted)

Layer Thickness 0.0004 0.0011  0.0008 0.0004 0.0004
Zonal V. 0.0122 0.0022  0.0024 0.0016 0.0016
Meridional V. 0.0075 0.0024  0.0019 0.0013 0.0013
Temp. 0.3876 0.0494  0.0484 0.0385 0.0392
Salinity 0.0072 0.0026  0.0024 0.0018 0.0017

Regarding the parametric sensitivity, we use J; = £[ly,[|3 as thg scalar—va}aued objectiveﬂ and
. . . o e . . o0J o aJ Vi y . .
compute the individual model sensitivity estimate as %% = Wkﬁ = Yk5,.2. Similar to the
ensemble prediction, we aggregate the individual model sensitivity estimates to obtain the ensemble
bl . e
D MMV Zszl wkyk%, and the uncertainty of the ensemble sensitivity

B
: 2 _ K 0J} o ensemble o
estimate as 03, = >y wk( Gk — 55 )"

sensitivity estimate as

3 Numerical Experiments

We adopt the Fourier Neural Operator (FNO) [19] as the surrogate and apply our framework to
the Simulating Mesoscale Ocean Activity (SOMA) model [9]. The FNO is trained on five ocean
state variables, salinity, temperature, layer thickness, and meridional and zonal velocities, using the
current state and the bolus kappa parameter (x represents its strength) [3] as input, and predicting
the next-step state. Hyperparameter optimization is performed with DeepHyper [18]], and the top
K = 10 models form our ensemble. We compare two weighting schemes: uniform weights and
regression-based weights learned on the validation set. Appendix [B]provides details on the SOMA
setup, data generation, preprocessing, normalization, and training. Evaluation is conducted on three
tasks: single-step prediction, autoregressive rollout, and parametric sensitivity estimation.

Single-step prediction We report the model prediction RMSE over the testing set in Table[I] To
highlight the effect of learning, the results also include the constant predictor, which is the temporal
mean of ocean states. Aside from the layer thickness, all trained models present improved predictions
over the constant predictor. In particular, the optimal model is superior to the baseline in predicting
four out of the five states. The performance improvement continues for the constructed ensembles,
which achieve the lowest RMSE scores. These results showcase the proposed framework’s high
accuracy in modeling the forward process of the physical model over all single surrogates.

Rollout We investigate the model’s ability for producing longer-term forecasts by recursively
making predictions of the ocean state variables at the next time step using the previous prediction
as input. In the ideal situation, when the model prediction for single-step forward matches the truth
state exactly, with the fixed time resolution, we expect to see infinite long, accurate rollout. However,
due to the accumulation of prediction errors, the duration of producing accurate and stable rollout
shortens. To evaluate the rollout performance, we compute the spatially averaged ocean state time
series from the true and predicted states and compare the discrepancies between the two. Figure[Z]
shows the rollout performance comparison among models. The optimal and ensemble models show
a significant rollout performance improvement over the baseline despite the slight improvement in
single time-stepping prediction task. The long-term autogressive prediction amplifies the subtle
difference in error accumulation.

Parametric sensitivity Our final objective is to leverage the trained models to compute parametric
sensitivity in the form of derivatives. As described in Section 2] we use the simple sum-of-square
of the ocean states as the scalar-valued function for which we study the sensitivity. We compute
and visualize the parametric sensitivity for temperature fields at x = 1429.81. Figure [3|shows the
comparison of estimated sensitivity using the trained models on the sea surface (depth 0). The
models show substantial differences in magnitudes and the value distribution in their estimate
for the parametric sensitivity. The baseline and ensemble models show similar sensitivity ranges

2The specific choice of the objective is for a proof of concept, which doesn’t necessarily correspond to a
meaningful physical quantity. A more realistic objective function can be used based on the specific application.
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Figure 2: Autoregressive rollout performance comparisons among the three models. The curves are
the spatially averaged ocean states for § years. For the baseline model, the forecasts quickly diverge
from the true state due to error accumulation, whereas the ensembles generate stable prediction for
all ocean states.
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and present value concentration at certain areas while the best model from the HPO displays a
wider range and more uniform distribution of values. Meanwhile, the ensemble models offer
quantified uncertainties for the sensitivity estimate, suggesting evident variations among the ensemble
members. This observation validates that a well-trained neural network for the forward model
does not necessarily provide accurate derivative estimates. As the ground truth sensitivity is not
available, we instead indirectly validate the estimated sensitivity using the linearized models to make
predictions for nearby points. We expect the model having a better sensitivity estimation to produce
a more accurate linear model. We linearize the trained model around each ki, € Dicgt, to Obtain
Mtinearized (x oy — M (x, Kin) + g?]\f](/@ — Kin). We then use M'inearized (x ) to make predictions
of ocean state variables under a x value in the testing set such that £ = min{x’ € Dyegt|kin < &'}
Figure[d] shows the testing RMSE of the linearized models on the temperature fields, where we also
report the full model performance for reference. The baseline and uniformly weighted ensemble result
in the lower RMSE, while the linearized best model presents the highest errors, despite its improved
performance in the forward prediction (as the full model) over the baseline. By evaluating both
forward-prediction accuracy and sensitivity estimates, our ensembles achieve superior performance
while delivering quantified predictive uncertainty.
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tivity of .J calculated using the temperature fields ~ Figure 4: RMSE of the temperature predictions
to K. from linearized models.

4 Conclusion

This paper presents a deep ensemble approach for improved parametric sensitivity estimates for ocean
models. Utilizing a large-scale HPO, we select top performing models and use two weighting schemes
to construct the ensembles. The trained models are evaluated in single time-stepping prediction,
long-range autoregressive rollout, and parametric sensitivity estimation. Without access to ground



truth sensitivity, we evaluate the linearized models to assess the quality of sensitivity estimates. The
results show that the proposed ensemble models outperform the baseline model and best model from
the HPO in all three tasks and provide quantified uncertainty at the same time. Future work involves
extending the framework to multiple parameterizations and sensitivity evaluation through numerical
differentiation of the physical model or data assimilation.
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A Methodology details

We list the detailed steps of the proposed framework in Algorithm|[I] Note that this framework is not
limited to top-K selection with uniform weighting or re-weighting via linear regression. We plan to
explore other model selection criteria, such as greedy selection [20]], in future work.

Algorithm 1 Deep ensemble for ocean dynamics and parametric sensitivity

Given training and validation datasets, Dyin, Dyal
Define baseline neural network, My, ..
Select HPO surrogate .S and acquisition function a.
Select ensemble size K.
Initialize HPO with My, _, 6" < Opase-
for n in number of search steps do
Evaluate candidate hyperparameters 6’ using Dy,.
Fit S with " and compute «.(6").
9:  Return new model candidates § = arg maxge,, (6)
10: end for
11: Rank models in HPO results and keep first /' models.
12: Fully train the selected models
13: if Selection criterion is Top-K then
14:  Return model weights wy = -+ = wg, > wi = 1.
15: else if Selection criterion is weighted then
16:  Perform linear regression
17:  Return updated weights, wq, ..., wgk.
18: end if )
19: Produce ensemble predictions of x,4; and g—i.

RN HERN

B Experiment details

B.1 Data generation

Following [16], we perturb the Gent—-McWilliams parameterization while keeping all other parame-
terizations at their nominal values to run independent simulations for model training and evaluation.
Specifically, we sample values from a uniform distribution (range in Table[2)) and create 100 forward
runs. In each run, the simulation is initialized from the same condition and integrated for 23 years,
with monthly snapshots saved. At the 32 km resolution, the grid consists of 8,521 hexagonal cells (a
nearly circular horizontal domain), each with 60 vertical levels. Each simulation year produces over
13 million (8521 x 60 x 26) cell values for each spatially and temporally varying output variable in the
dataset. We select five ocean states—layer thickness, zonal velocity, meridional velocity, temperature,
and salinity—as targets and truncate the trajectories to retain the last 8 years, discarding the necessary
spin-up stage. Each simulation run was performed using the publicly available code, which can be
found at Anonymous.

Table 2: Range of Perturbed Parameter Values.

SOMA Parameter Symbol Minimum Maximum
GM_constant_kappa K 200.0 2000.0

The generated data, in its original fidelity and representation, poses challenges for training FNO-based
models because it is defined on an irregular grid. To address this, the mesh-grid data was converted
to a standard latitude—longitude grid through spatial interpolation, and the values were mapped to
regular array entries. As aresult, we obtain data on regular grids stored as arrays, each instance having
shape (6, 60, 100, 100). The first dimension contains the five ocean states and one model parameter
, while the last three dimensions represent the spatial axes of the domain. We then convert the last 8
years of trajectories from the 100 independent simulations to these regular grid representations. Each
simulation consists of 208 time steps covering the full trajectory. Finally, we split the trajectories into



training, validation, and testing sets and prepare input—output pairs (Section [J)) using two consecutive
time steps.

B.2 Data preprocessing

The raw data are three-dimensional in space, forming a nearly circular horizontal domain with
multiple vertical layers indicating depth. Similar to most weather and climate modeling tasks [21}22],
we treat the vertical layers as additional feature dimensions. The data are therefore represented with
shape (360, 100, 100), where the first axis corresponds to various ocean state values across depths.
For example, the first 60 entries store layer thickness values from the sea surface (depth 0) to the 60th
layer, while the last 60 represent the parameterization for this particular simulation across the vertical
layers, which remain spatially constant in this work.

We transform the data for model training to improve stability and generalization. For each ocean state
at each horizontal location (including the model output y = x¢41), we use per-depth statistics to
standardize the data as follows, for all ¢,

scale __ Xi,d — Mid
i,d T )
0i,d

X

where x; 4 denotes the ith ocean state at depth d, and y; 4 and o; 4 are the corresponding sample
mean and standard deviation obtained from the training set. At evaluation time, after the trained
model produces forecasts, we apply inverse scaling to map the values back to the original physical

space, for all ¢,

__ scale
Xid = X;q " 0id T [id-

For the variance of predictions from the ensemble model, the corresponding value in the original
space can be obtained as

s_cgle]
1, .

Var[x; 4] = 07 4 - Var[x

We leverage automatic differentiation to compute the parametric sensitivity. Since the trained networks
07 (x/15)

operate on normalized data and % is not computable from —5 =

axee . . . .. .. .
to a’;ﬁjgli (explanation below), we wrap the network operation with additional normalization and its
inverse transform and differentiate it with respect to the parameterization . Therefore, the output

directly reflects the estimated %.

without the explicit access

Rescaling computed sensitivity Given that we train the neural networks using normalized data, the
most straightforward way to compute the adjoint sensitivity is to pass the model output to the scalar-

value objective function and differentiate this function with respect to the input parameterization,
6J<ci\le

O scale o

and perform associated transformations to reach %. However, we now show that this is not

scale

. . .. ) . ..
feasible without explicit access to 6’;23@ . For simplicity, we now use x to denote the model output

Xt41-

With J(x) = 1|/x|3 and normalization transformation listed in Section in the normalized space,
we can easily compute

aJ(Xscale) scaler T axscale
—_— = . 1
aﬂscale (X ) 8/15(:316 ( )
Our final objective is to compute the sensitivity in the original scale, plugging (IJ) in,
0J (x) +0x T Oy OxCle
=X — =X —
Ok Ok o, Orscale
To'ix 6xscu]c aJ(xNCHIE) (2)

scale
(O'XX + ,sz) o, Ol o scale

_ (erele) T e

. . . scale . .
Since px # 0 and x is not a scalar, we require the access to % to perform the transformation in ,
which requires additional and less efficient steps to obtain in the reverse-mode auto-differentiation



process. Therefore, we use the objective function directly taking the input in the original scale and

add additional normalizing and unnormalizing steps to directly compute %—E{x).

B.3 Model training and evaluation

We adopt the FNOs implemented in PhysicsNeMo [23] and use the default hyperparameters as
the baseline for all surrogates in this work. The domain of the ocean states is nearly circular in
the horizontal direction, and the horizontal mask is not constant across vertical layers because the
domain of interest is bowl-shaped, with horizontal area decreasing as depth increases. As a result, we
apply masking during training and compute the loss only over values inside the domain. No special
constraints are placed outside the domain; both true and predicted values are simply set to zero.

Once the models are trained, we evaluate them on the testing set and report the root mean squared
error (RMSE) of model performance across various state variables for single-step forward predictions.
In addition, we use the time-averaged ocean states as a constant predictor to set a benchmark for
model evaluation. Different from training, we do not set values outside the domain to zero; instead,
we exclude them from the calculation and only account for values within the domain of interest.

We randomly select a simulation associated with a unique « in the testing set to evaluate and visualize
model performance on autoregressive rollout and adjoint sensitivity estimation. For the rollout, we
compute the spatially averaged values of each ocean state at each time step and compare them to
the ground truth. For adjoint sensitivity, since true derivatives are not available, we report only the
time-averaged adjoint sensitivities of variables at different vertical levels.

B.4 Hyperparameter optimization details

With the baseline model, we aim to conduct large-scale HPO to (1) further improve predictive accuracy
and (2) create a candidate pool for constructing a deep ensemble for stable rollout and improved
adjoint sensitivity estimation with quantified uncertainty. We utilize a /2-dimensional hyperparameter
search space spanning FNO architectures, data transformations, and training strategies. A detailed
description of the search space is provided in Table[3] The optimization objective is set to minimizing
the validation loss, and we adopt the 1-epoch strategy [24] to avoid excessive computational overhead
during the search. We employ 40 NVIDIA A100 GPUs for parallelized evaluations, obtaining over
500 hyperparameter configurations. Figure [5|shows the search trajectory, which gravitates toward
hyperparameter configurations outperforming the baseline (marked in red). This is accompanied
by an increased number of high-performing models compared to the baseline. We then construct
ensembles from the top-K configurations and train each member for 64K steps. Finally, we apply
linear regression to re-weight the ensemble members, as discussed in Section [3] to further improve
performance.
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Figure 5: Hyperparameter search trajectory. Starting with the baseline configuration, the search
balances the exploration and exploitation which leads to increasingly better models depicted by the
solid black line. The number of high performing models increases accordingly.



Table 3: Hyperparameter search space

Variable Names. Type Range/Choice Baseline

padding int [1,16] 8

padding_type str [‘constant’, ‘reflect’, constant
‘replicate’, ‘circular’]

coord_feat bool [True, Falsel] True

lift_act str [‘relu’, ‘leaky_relu’, gelu

‘prelu’, ‘relu6’, ‘elu’,
‘selu’, ‘silu’, ‘gelu’,
‘sigmoid’, ‘logsigmoid’,
‘softplus’, ‘softshrink’,
‘softsign’, ‘tanh’,
‘tanhshrink’, ‘threshold’,
‘hardtanh’, ‘identity’,
‘squareplus’]

num_FNO int 2,32 4
num_modes int [2,32] 16
latent_ch int 2, 64] 32
num_projs int [1,16] 1
proj_size int 2,32] 32
proj_act str [‘relu’, ‘leaky_relu’, silu
‘prelu’, ‘relu6’, ‘elu’,
‘selu’, ‘silu’, ‘gelu’,
‘sigmoid’, ‘logsigmoid’,
‘softplus’, ‘softshrink’,
‘softsign’, ‘tanh’,
‘tanhshrink’, ‘threshold’,
‘hardtanh’, ‘identity’,
‘squareplus’]
1r float [107°%,1072] 1073
weight_decay float [0,0.1] 0

B.5 Additional results

We list the visualizations of the single time-stepping prediction, autoregressive rollout, and parametric
sensitivity estimates of all ocean states in this section.

For the single time-stepping prediction of all ocean states, Figure[6]visualizes the baseline performance
on a testing data point. At the sea surface (depth 0), the baseline model captures state fields that
closely resemble the true ocean states. However, compared to the zonal and meridional velocities,
forecasts of the other states exhibit relatively larger fraction errors. Such errors can reduce the
reliability of adjoint sensitivity estimates and accelerate error accumulation during autoregressive
rollout, underscoring the need for improved modeling of ocean dynamics. For this particular case, the
best model from HPO does not show a clear improvement over the baseline, reflecting only marginal
performance gains. In contrast, the Top-10 ensemble improves the forecast of layer thickness, yielding
lower fraction errors than both the baseline and optimal models. The weighted Top-10 ensemble

performs similarly to the uniform Top-10 ensemble, with both ensembles outperforming the baseline
and single best models.

Figure[7|shows the parametric sensitivity estimates from all models considered in this work across
the ocean states. Although the baseline and best models produce similar forward predictions, their
sensitivity estimates differ substantially. In contrast, the two ensembles exhibit only marginal
differences in sensitivity estimates and show strong agreement in predictive uncertainty.
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Figure 6: Visualization of the single-step model predictions at the sea surface. The top most row
shows the true ocean states; in each inset thereafter, the top row is the predicted states and bottom
row shows the fractional error of the predicted fields.
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Figure 7: Time-averaged parametric sensitivity of ocean states at the sea surface with respect to the
parameterization. The order of the states are layer thickness, zonal velocity, meridional velocity,
temperature, and salinity. (a) baseline; (b) optimal model; (c) Top-10 ensemble; (d) Weighted Top-10
ensemble.
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