
Ensembles of Neural Surrogates for Parametric
Sensitivity in Ocean Modeling

Yixuan Sun
Argonne National Laboratory

yixuan.sun@anl.gov

Romain Egele
Oak Ridge National Laboratory

regele@ornl.gov

Sri Hari Krishna Narayanan
Argonne National Laboratory

snarayan@anl.gov

Luke Van Roekel
Los Alamos National Laboratory

lvanroekel@lanl.gov

Carmelo Gonzales
NVIDIA

carmelog@nvidia.com

Steven Brus
Argonne National Laboratory

sbrus@anl.gov

Balu Nadiga
Los Alamos National Laboratory

balu@lanl.gov

Sandeep Madireddy
Argonne National Laboratory

smadireddy@anl.gov

Prasanna Balaprakash
Oak Ridge National Laboratory

pbalapra@ornl.gov

Abstract

Accurate simulations of the oceans are crucial in understanding the Earth system.
Despite their efficiency, simulations at lower resolutions must rely on various
uncertain parameterizations to account for unresolved processes. However, model
sensitivity to parameterizations is difficult to quantify, making it challenging to tune
these parameterizations to reproduce observations. Deep learning surrogates have
shown promise for efficient computation of the parametric sensitivities in the form
of partial derivatives, but their reliability is difficult to evaluate without ground
truth derivatives. In this work, we leverage large-scale hyperparameter search and
ensemble learning to improve both forward predictions, autoregressive rollout,
and backward adjoint sensitivity estimation. Particularly, the ensemble method
provides epistemic uncertainty of function value predictions and their derivatives,
providing improved reliability of the neural surrogates in decision making.

1 Introduction

The ocean is a vast reservoir of heat and plays a significant role in redistributing heat from the
equatorial regions to the poles. Accurate simulation of this heat transport requires resolution of
smaller scale ocean eddies [1]. While various ocean models have been constructed to model these
complex dynamics [2–4], at lower resolution, these critical eddies must be modeled separately using
a parametrization. Commonly, small scale eddies are modeled to remove baroclinic instability and
also transport tracers along constant density layers [5, 6]. At smaller scales, vertical turbulent mixing
is modeled as a down gradient process [7]. On the larger scale ocean, the effect of parameterizations
is poorly understood, making it challenging to optimize uncertain model parameters to better match
observations [8, 9]. Therefore, it is crucial to understand the model parametric sensitivity to effectively
perform tuning to minimize model bias relative to observations. However, the existing physics-
based ocean model codes are often too computationally expensive and not readily differentiable to

Preprint. Under review.

…

xt, κ

FNO y(1)

J(·)
...

…

yensemble, ∂J
∂κ

ensemble

∂J
∂κ

(1)

FNO y(K)

J(·)
∂J
∂κ

(K)

Figure 1: Overview of deep ensemble of Fourier Neural Operators (FNOs) for ocean parametric
sensitivity. We train individual models with diverse hyperparameters to produce time-stepping
predictions and parametric sensitivities. We aggregate these outputs to produce ensemble predictions
of future ocean states and estimates of the partial derivative of objective J w.r.t. the parameterization
κ.

support perturbation analysis or automatic differentiation [10]. Alternatively, neural surrogates have
emerged [11–14], which can approximate the parametric sensitivity inexpensively by differentiating
the trained networks [15, 16]. However, without ground truth derivatives to constrain the training,
such as in [17], the estimated derivatives can deviate substantially from the true values, even when
the network accurately reproduces the forward process. We propose to alleviate this issue through an
ensemble of neural surrogates constructed from a large-scale hyperparameter optimization (HPO),
as illustrated in Figure 1. The ensemble improves both the forward prediction performance and
derivative estimates, which enables more stable autoregressive rollouts of the ocean states for long-
term forecasts. Moreover, the neural surrogate ensemble provides quantified epistemic uncertainty,
providing detailed reliability information for decision-making.

2 Neural Surrogate and Deep Ensemble

The target neural network surrogate model, M(·; θ), approximates the true physical model,M(x, κ).
Here x and κ are the current ocean states and physical parameter of interest, and θ is set of the
neural network parameters (including trainable parameters and architecture choices). We also aim
to estimate the parametric sensitivity of a model-dependent objective function J by computing its
derivative w.r.t. the parameterization, dJ

dκ = ∇MJ ∂M
∂κ

1. Specifically, for given training data set
Dtrain = {(xi, κi),yi}Ni=1, generated from the true physical process yi = M(xi, κi), where y
represents the ocean states at a future time, and N is the number of input-output pairs. We train the
neural network, Nθ, such that M(xi, κi; θ) = yi by minimizing the loss function L(θ;Dtrain) =
1
N

∑N
i=1 ∥y(i) −Nθ(x

(i), κ(i))∥22, and use ∂M
∂κ as the estimate of the parametric sensitivity.

We select the ensemble members from the results of a large-scale HPO, where the mapping between
the hyperparameters and model performance is treated as a black-box function, F = h(λ), λ ∈ Λ. F
is the objective function, and Λ denotes the hyperparameter search space of which a point defines the
data preprocessing, neural architectures, and training strategies. We simply use the validation loss
as the search objective to be minimized, F ∗ = minθ L(θ;Dval). During the search, we model the
relationship using a tree-based surrogate, ĥ, from the current known hyperparameter set and objective
pairs, (λi, Fi), s.t.Fi = ĥ(λi), and perform centralized Bayesian optimization to select the next best
evaluation point that can potentially lead to the global optimum [18]. Once the HPO has completed,
we then select K top-performing models as the ensemble members.

Let Mk(x, κ; θk) denote the kth member of the ensemble parameterized by θk. The ensemble
prediction of the ocean states are yens =

∑K
k=1 wkMk(x, κ, θk), where wk is the weight associated

with the kth member of the ensemble. Then the model uncertainty is expressed as the empirical
distribution variance, σ2 =

∑K
k=1 wk(yk − yens)

2.

1The total derivative equals the partial derivative with respect to κ in this case, as the current state x is
assumed to be independent of κ.

2

Table 1: RMSE (↓) of single step forward predictions.
Constant Pred. Baseline Top-1 Top10 Ensemble Top10 Ensemble (weighted)

Layer Thickness 0.0004 0.0011 0.0008 0.0004 0.0004
Zonal V. 0.0122 0.0022 0.0024 0.0016 0.0016

Meridional V. 0.0075 0.0024 0.0019 0.0013 0.0013
Temp. 0.3876 0.0494 0.0484 0.0385 0.0392

Salinity 0.0072 0.0026 0.0024 0.0018 0.0017

Regarding the parametric sensitivity, we use Jk = 1
2∥yk∥22 as the scalar-valued objective2 and

compute the individual model sensitivity estimate as ∂Jk

∂κ = ∂J
∂yk

∂yk

∂κ = yk
∂yk

∂κ . Similar to the
ensemble prediction, we aggregate the individual model sensitivity estimates to obtain the ensemble
sensitivity estimate as ∂J

∂κ

ensemble
=

∑K
k=1 wkyk

∂yk

∂κ , and the uncertainty of the ensemble sensitivity

estimate as σ2
∂J =

∑K
k=1 wk(

∂Jk

∂κ − ∂J
∂κ

ensemble
)2.

3 Numerical Experiments

We adopt the Fourier Neural Operator (FNO) [19] as the surrogate and apply our framework to
the Simulating Mesoscale Ocean Activity (SOMA) model [9]. The FNO is trained on five ocean
state variables, salinity, temperature, layer thickness, and meridional and zonal velocities, using the
current state and the bolus kappa parameter (κ represents its strength) [5] as input, and predicting
the next-step state. Hyperparameter optimization is performed with DeepHyper [18], and the top
K = 10 models form our ensemble. We compare two weighting schemes: uniform weights and
regression-based weights learned on the validation set. Appendix B provides details on the SOMA
setup, data generation, preprocessing, normalization, and training. Evaluation is conducted on three
tasks: single-step prediction, autoregressive rollout, and parametric sensitivity estimation.

Single-step prediction We report the model prediction RMSE over the testing set in Table 1. To
highlight the effect of learning, the results also include the constant predictor, which is the temporal
mean of ocean states. Aside from the layer thickness, all trained models present improved predictions
over the constant predictor. In particular, the optimal model is superior to the baseline in predicting
four out of the five states. The performance improvement continues for the constructed ensembles,
which achieve the lowest RMSE scores. These results showcase the proposed framework’s high
accuracy in modeling the forward process of the physical model over all single surrogates.

Rollout We investigate the model’s ability for producing longer-term forecasts by recursively
making predictions of the ocean state variables at the next time step using the previous prediction
as input. In the ideal situation, when the model prediction for single-step forward matches the truth
state exactly, with the fixed time resolution, we expect to see infinite long, accurate rollout. However,
due to the accumulation of prediction errors, the duration of producing accurate and stable rollout
shortens. To evaluate the rollout performance, we compute the spatially averaged ocean state time
series from the true and predicted states and compare the discrepancies between the two. Figure 2
shows the rollout performance comparison among models. The optimal and ensemble models show
a significant rollout performance improvement over the baseline despite the slight improvement in
single time-stepping prediction task. The long-term autogressive prediction amplifies the subtle
difference in error accumulation.

Parametric sensitivity Our final objective is to leverage the trained models to compute parametric
sensitivity in the form of derivatives. As described in Section 2, we use the simple sum-of-square
of the ocean states as the scalar-valued function for which we study the sensitivity. We compute
and visualize the parametric sensitivity for temperature fields at κ = 1429.81. Figure 3 shows the
comparison of estimated sensitivity using the trained models on the sea surface (depth 0). The
models show substantial differences in magnitudes and the value distribution in their estimate
for the parametric sensitivity. The baseline and ensemble models show similar sensitivity ranges

2The specific choice of the objective is for a proof of concept, which doesn’t necessarily correspond to a
meaningful physical quantity. A more realistic objective function can be used based on the specific application.

3

0 50 100 150 200

Time step

0.002

0.004

0.006

0.008

M
ea

n
 L

a
y
er

 T
h
ic

k
n
es

s

+3.488× 101

0 50 100 150 200

Time step

−0.0015

−0.0010

−0.0005

0.0000

M
ea

n
 Z

on
a
l
V

.

0 50 100 150 200

Time step

−0.001

0.000

M
ea

n
 M

er
id

io
n
al

 V
.

0 50 100 150 200

Time step

8.4

8.6

8.8

9.0

9.2

M
ea

n
 T

em
p
.

0 50 100 150 200

Time step

34.38

34.40

M
ea

n
 S

al
in

it
y True

Baseline

Best

TopK

W. TopK

Figure 2: Autoregressive rollout performance comparisons among the three models. The curves are
the spatially averaged ocean states for 8 years. For the baseline model, the forecasts quickly diverge
from the true state due to error accumulation, whereas the ensembles generate stable prediction for
all ocean states.

and present value concentration at certain areas while the best model from the HPO displays a
wider range and more uniform distribution of values. Meanwhile, the ensemble models offer
quantified uncertainties for the sensitivity estimate, suggesting evident variations among the ensemble
members. This observation validates that a well-trained neural network for the forward model
does not necessarily provide accurate derivative estimates. As the ground truth sensitivity is not
available, we instead indirectly validate the estimated sensitivity using the linearized models to make
predictions for nearby points. We expect the model having a better sensitivity estimation to produce
a more accurate linear model. We linearize the trained model around each κin ∈ Dtest, to obtain
M linearized(x, κ) = M(x, κin) +

∂M
∂κin

(κ− κin). We then use M linearized(x, κ) to make predictions
of ocean state variables under a κ value in the testing set such that κ = min{κ′ ∈ Dtest|κin < κ′}.
Figure 4 shows the testing RMSE of the linearized models on the temperature fields, where we also
report the full model performance for reference. The baseline and uniformly weighted ensemble result
in the lower RMSE, while the linearized best model presents the highest errors, despite its improved
performance in the forward prediction (as the full model) over the baseline. By evaluating both
forward-prediction accuracy and sensitivity estimates, our ensembles achieve superior performance
while delivering quantified predictive uncertainty.

Best

Baseline Ensemble (uni. w.) Ensemble (lrn. w.)

Figure 3: Time averaged model estimated sensi-
tivity of J calculated using the temperature fields
to κ.

Baseline Best Ensemble Reweighted Ensemble

4× 10−2

5× 10−2

6× 10−2

R
M

S
E

Linear Model

Full Model

Figure 4: RMSE of the temperature predictions
from linearized models.

4 Conclusion

This paper presents a deep ensemble approach for improved parametric sensitivity estimates for ocean
models. Utilizing a large-scale HPO, we select top performing models and use two weighting schemes
to construct the ensembles. The trained models are evaluated in single time-stepping prediction,
long-range autoregressive rollout, and parametric sensitivity estimation. Without access to ground

4

truth sensitivity, we evaluate the linearized models to assess the quality of sensitivity estimates. The
results show that the proposed ensemble models outperform the baseline model and best model from
the HPO in all three tasks and provide quantified uncertainty at the same time. Future work involves
extending the framework to multiple parameterizations and sensitivity evaluation through numerical
differentiation of the physical model or data assimilation.

Acknowledgments and Disclosure of Funding

This research used resources from the NERSC, a U.S. Department of Energy Office of Science User
Facility located at LBNL. Material based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research and Office of BER, Scientific
Discovery through Advanced Computing (SciDAC) program, under Contract DE-AC02-06CH11357.
We are grateful to the Sustainable Horizons Institute’s Sustainable Research Pathways workforce
development program.

References
[1] Stephen M. Griffies, Michael Winton, Whit G. Anderson, Rusty Benson, Thomas L. Delworth,

Carolina O. Dufour, John P. Dunne, Paul Goddard, Adele K. Morrison, Anthony Rosati,
Andrew T. Wittenberg, Jianjun Yin, and Rong Zhang. Impacts on ocean heat from transient
mesoscale eddies in a hierarchy of climate models. Journal of Climate, 28(3):952 – 977,
2015. doi: 10.1175/JCLI-D-14-00353.1. URL https://journals.ametsoc.org/view/
journals/clim/28/3/jcli-d-14-00353.1.xml.

[2] Kristin E Hoch, Mark R Petersen, Steven R Brus, Darren Engwirda, Andrew F Roberts, Kevin L
Rosa, and Phillip J Wolfram. Mpas-ocean simulation quality for variable-resolution north amer-
ican coastal meshes. Journal of Advances in Modeling Earth Systems, 12(3):e2019MS001848,
2020.

[3] Jean-Christophe Golaz, Luke P Van Roekel, Xue Zheng, Andrew F Roberts, Jonathan D Wolfe,
Wuyin Lin, Andrew M Bradley, Qi Tang, Mathew E Maltrud, Ryan M Forsyth, et al. The doe
e3sm model version 2: Overview of the physical model and initial model evaluation. Journal of
Advances in Modeling Earth Systems, 14(12):e2022MS003156, 2022.

[4] Shreyas Sunil Gaikwad, Sri Hari Krishna Narayanan, Laurent Hascoet, Jean-Michel Campin,
Helen Pillar, An Nguyen, Jan Huckelheim, Paul Hovland, and Patrick Heimbach. Mitgcm-ad
v2: Open source tangent linear and adjoint modeling framework for the oceans and atmosphere
enabled by the automatic differentiation tool tapenade, 2024. URL https://arxiv.org/
abs/2401.11952.

[5] Peter R. Gent and James C. Mcwilliams. Isopycnal mixing in ocean circulation models. Journal
of Physical Oceanography, 20(1):150 – 155, 1990. doi: 10.1175/1520-0485(1990)020<0150:
IMIOCM>2.0.CO;2.

[6] Martha H. Redi. Oceanic isopycnal mixing by coordinate rotation. Journal of Physical Oceanog-
raphy, 12(10):1154–1158, 1982. doi: https://doi.org/10.1175/1520-0485(1982)012<1154:
OIMBCR>2.0.CO;2.

[7] W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: A review and a
model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4):363–403,
1994. doi: https://doi.org/10.1029/94RG01872.

[8] Pavel Perezhogin, Arun Balakrishna, and Rahul Agrawal. Large eddy simulation of ocean
mesoscale eddies, 2025. URL https://arxiv.org/abs/2501.05357.

[9] Phillip J Wolfram, Todd D Ringler, Mathew E Maltrud, Douglas W Jacobsen, and Mark R
Petersen. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via
lagrangian, in situ, global, high-performance particle tracking (LIGHT). Journal of Physical
Oceanography, 45(8):2114–2133, 2015.

5

https://journals.ametsoc.org/view/journals/clim/28/3/jcli-d-14-00353.1.xml
https://journals.ametsoc.org/view/journals/clim/28/3/jcli-d-14-00353.1.xml
https://arxiv.org/abs/2401.11952
https://arxiv.org/abs/2401.11952
https://arxiv.org/abs/2501.05357

[10] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. SIAM, 2008. doi: 10.1137/1.9780898717761.

[11] Taeyoon Kim and Woo-Dong Lee. Review on applications of machine learning in coastal and
ocean engineering. Journal of Ocean Engineering and Technology, 36(3):194–210, 2022.

[12] Marko Radeta, Agustin Zuniga, Naser Hossein Motlagh, M. Liyanage, Rúben Freitas, Maged A.
Youssef, S. Tarkoma, Huber Flores, and P. Nurmi. Deep learning and the oceans. Computer, 55:
39–50, 2022. doi: 10.1109/mc.2022.3143087.

[13] M. J. Er, Jie Chen, Yani Zhang, and Wenxiao Gao. Research challenges, recent advances, and
popular datasets in deep learning-based underwater marine object detection: A review. Sensors
(Basel, Switzerland), 23, 2023. doi: 10.3390/s23041990.

[14] Ashesh Chattopadhyay, Michael Gray, Tianning Wu, Anna B Lowe, and Ruoying He. Oceannet:
A principled neural operator-based digital twin for regional oceans. Scientific Reports, 14(1):
21181, 2024.

[15] Yixuan Sun, Elizabeth Cucuzzella, Steven Brus, Sri Hari Krishna Narayanan, Balu Nadiga,
Luke Van Roekel, Jan Hückelheim, and Sandeep Madireddy. Surrogate neural networks to
estimate parametric sensitivity of ocean models. arXiv preprint arXiv:2311.08421, 2023.

[16] Yixuan Sun, Elizabeth Cucuzzella, Steven Brus, Sri Hari Krishna Narayanan, Balasubramanya
Nadiga, Luke Van Roekel, Jan Hückelheim, Sandeep Madireddy, and Patrick Heimbach. Para-
metric sensitivities of a wind-driven baroclinic ocean using neural surrogates. In Proceedings of
the Platform for Advanced Scientific Computing Conference, pages 1–10, 2024.

[17] Thomas O’Leary-Roseberry, Peng Chen, Umberto Villa, and Omar Ghattas. Derivative-informed
neural operator: An efficient framework for high-dimensional parametric derivative learning,
2023. URL https://arxiv.org/abs/2206.10745.

[18] Prasanna Balaprakash, Romain Egele, Misha Salim, Romit Maulik, Venkat Vishwanath, Stefan
Wild, et al. "deephyper: A python package for scalable neural architecture and hyperparameter
search", 2018. URL https://github.com/deephyper/deephyper.

[19] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

[20] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection
from libraries of models. In Proceedings of the twenty-first international conference on Machine
learning, page 18, 2004.

[21] Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Timo Ewalds, Andrew El-Kadi, Jacklynn
Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. GenCast: Diffusion-
based ensemble forecasting for medium-range weather, December 2023. URL http://arxiv.
org/abs/2312.15796. arXiv:2312.15796 [physics].

[22] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.
Climax: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

[23] PhysicsNeMo Contributors. Nvidia physicsnemo: An open-source framework for physics-based
deep learning in science and engineering. https://github.com/NVIDIA/physicsnemo,
February 2023. If you use this software, please cite it as below.

[24] Romain Egele, Isabelle Guyon, Yixuan Sun, and Prasanna Balaprakash. Is One Epoch All You
Need For Multi-Fidelity Hyperparameter Optimization? In ESANN 2023 proceesdings, pages
555–560, Bruges (Belgium) and online, 2023. Ciaco - i6doc.com. ISBN 978-2-87587-088-9.
doi: 10.14428/esann/2023.ES2023-84. URL https://www.esann.org/sites/default/
files/proceedings/2023/ES2023-84.pdf.

6

https://arxiv.org/abs/2206.10745
https://github.com/deephyper/deephyper
http://arxiv.org/abs/2312.15796
http://arxiv.org/abs/2312.15796
https://github.com/NVIDIA/physicsnemo
https://www.esann.org/sites/default/files/proceedings/2023/ES2023-84.pdf
https://www.esann.org/sites/default/files/proceedings/2023/ES2023-84.pdf

A Methodology details

We list the detailed steps of the proposed framework in Algorithm 1. Note that this framework is not
limited to top-K selection with uniform weighting or re-weighting via linear regression. We plan to
explore other model selection criteria, such as greedy selection [20], in future work.

Algorithm 1 Deep ensemble for ocean dynamics and parametric sensitivity

1: Given training and validation datasets, Dtrain, Dval
2: Define baseline neural network, Mθbase .
3: Select HPO surrogate S and acquisition function α.
4: Select ensemble size K.
5: Initialize HPO with Mθbase , θ

′ ← θbase.
6: for n in number of search steps do
7: Evaluate candidate hyperparameters θ′ using Dval.
8: Fit S with θ′ and compute α(θ′).
9: Return new model candidates θ′ = argmaxθ∈χ α(θ)

10: end for
11: Rank models in HPO results and keep first K models.
12: Fully train the selected models
13: if Selection criterion is Top-K then
14: Return model weights w1 = · · · = wK ,

∑
wk = 1.

15: else if Selection criterion is weighted then
16: Perform linear regression
17: Return updated weights, w1, . . . , wK .
18: end if
19: Produce ensemble predictions of xi+1 and ∂J

∂κ .

B Experiment details

B.1 Data generation

Following [16], we perturb the Gent–McWilliams parameterization while keeping all other parame-
terizations at their nominal values to run independent simulations for model training and evaluation.
Specifically, we sample values from a uniform distribution (range in Table 2) and create 100 forward
runs. In each run, the simulation is initialized from the same condition and integrated for 23 years,
with monthly snapshots saved. At the 32 km resolution, the grid consists of 8,521 hexagonal cells (a
nearly circular horizontal domain), each with 60 vertical levels. Each simulation year produces over
13 million (8521×60×26) cell values for each spatially and temporally varying output variable in the
dataset. We select five ocean states—layer thickness, zonal velocity, meridional velocity, temperature,
and salinity—as targets and truncate the trajectories to retain the last 8 years, discarding the necessary
spin-up stage. Each simulation run was performed using the publicly available code, which can be
found at Anonymous.

Table 2: Range of Perturbed Parameter Values.
SOMA Parameter Symbol Minimum Maximum

GM_constant_kappa κ 200.0 2000.0

The generated data, in its original fidelity and representation, poses challenges for training FNO-based
models because it is defined on an irregular grid. To address this, the mesh-grid data was converted
to a standard latitude–longitude grid through spatial interpolation, and the values were mapped to
regular array entries. As a result, we obtain data on regular grids stored as arrays, each instance having
shape (6, 60, 100, 100). The first dimension contains the five ocean states and one model parameter
κ, while the last three dimensions represent the spatial axes of the domain. We then convert the last 8
years of trajectories from the 100 independent simulations to these regular grid representations. Each
simulation consists of 208 time steps covering the full trajectory. Finally, we split the trajectories into

7

training, validation, and testing sets and prepare input–output pairs (Section 2) using two consecutive
time steps.

B.2 Data preprocessing

The raw data are three-dimensional in space, forming a nearly circular horizontal domain with
multiple vertical layers indicating depth. Similar to most weather and climate modeling tasks [21, 22],
we treat the vertical layers as additional feature dimensions. The data are therefore represented with
shape (360, 100, 100), where the first axis corresponds to various ocean state values across depths.
For example, the first 60 entries store layer thickness values from the sea surface (depth 0) to the 60th
layer, while the last 60 represent the parameterization for this particular simulation across the vertical
layers, which remain spatially constant in this work.

We transform the data for model training to improve stability and generalization. For each ocean state
at each horizontal location (including the model output y = xt+1), we use per-depth statistics to
standardize the data as follows, for all t,

xscale
i,d =

xi,d − µi,d

σi,d
,

where xi,d denotes the ith ocean state at depth d, and µi,d and σi,d are the corresponding sample
mean and standard deviation obtained from the training set. At evaluation time, after the trained
model produces forecasts, we apply inverse scaling to map the values back to the original physical
space, for all t,

xi,d = xscale
i,d · σi,d + µi,d.

For the variance of predictions from the ensemble model, the corresponding value in the original
space can be obtained as

Var[xi,d] = σ2
i,d ·Var[xscale

i,d].

We leverage automatic differentiation to compute the parametric sensitivity. Since the trained networks

operate on normalized data and ∂J(xt+1)
∂κ is not computable from ∂J(xscale

t+1)

∂κscale without the explicit access

to ∂xscale
t+1

∂κscale (explanation below), we wrap the network operation with additional normalization and its
inverse transform and differentiate it with respect to the parameterization κ. Therefore, the output
directly reflects the estimated ∂J(xt+1)

∂κ .

Rescaling computed sensitivity Given that we train the neural networks using normalized data, the
most straightforward way to compute the adjoint sensitivity is to pass the model output to the scalar-
value objective function and differentiate this function with respect to the input parameterization,
∂J scale

∂κscale , and perform associated transformations to reach ∂J
∂κ . However, we now show that this is not

feasible without explicit access to ∂xscale
t+1

∂κscale . For simplicity, we now use x to denote the model output
xt+1.

With J(x) = 1
2∥x∥22 and normalization transformation listed in Section 3, in the normalized space,

we can easily compute

∂J(xscale)

∂κscale = (xscale)⊤
∂xscale

∂κscale . (1)

Our final objective is to compute the sensitivity in the original scale, plugging (1) in,

∂J(x)

∂κ
= x⊤ ∂x

∂κ
= x⊤σx

σκ

∂xscale

∂κscale

=
(σxx

scale + µx)
⊤ σx

σκ

∂xscale

∂κscale
∂J(xscale)

κscale

(xscale)⊤ ∂xscale

∂κscale

.

(2)

Since µx ̸= 0 and x is not a scalar, we require the access to ∂xscale

∂κscale to perform the transformation in (2),
which requires additional and less efficient steps to obtain in the reverse-mode auto-differentiation

8

process. Therefore, we use the objective function directly taking the input in the original scale and
add additional normalizing and unnormalizing steps to directly compute ∂J(x)

∂κ .

B.3 Model training and evaluation

We adopt the FNOs implemented in PhysicsNeMo [23] and use the default hyperparameters as
the baseline for all surrogates in this work. The domain of the ocean states is nearly circular in
the horizontal direction, and the horizontal mask is not constant across vertical layers because the
domain of interest is bowl-shaped, with horizontal area decreasing as depth increases. As a result, we
apply masking during training and compute the loss only over values inside the domain. No special
constraints are placed outside the domain; both true and predicted values are simply set to zero.

Once the models are trained, we evaluate them on the testing set and report the root mean squared
error (RMSE) of model performance across various state variables for single-step forward predictions.
In addition, we use the time-averaged ocean states as a constant predictor to set a benchmark for
model evaluation. Different from training, we do not set values outside the domain to zero; instead,
we exclude them from the calculation and only account for values within the domain of interest.

We randomly select a simulation associated with a unique κ in the testing set to evaluate and visualize
model performance on autoregressive rollout and adjoint sensitivity estimation. For the rollout, we
compute the spatially averaged values of each ocean state at each time step and compare them to
the ground truth. For adjoint sensitivity, since true derivatives are not available, we report only the
time-averaged adjoint sensitivities of variables at different vertical levels.

B.4 Hyperparameter optimization details

With the baseline model, we aim to conduct large-scale HPO to (1) further improve predictive accuracy
and (2) create a candidate pool for constructing a deep ensemble for stable rollout and improved
adjoint sensitivity estimation with quantified uncertainty. We utilize a 12-dimensional hyperparameter
search space spanning FNO architectures, data transformations, and training strategies. A detailed
description of the search space is provided in Table 3. The optimization objective is set to minimizing
the validation loss, and we adopt the 1-epoch strategy [24] to avoid excessive computational overhead
during the search. We employ 40 NVIDIA A100 GPUs for parallelized evaluations, obtaining over
500 hyperparameter configurations. Figure 5 shows the search trajectory, which gravitates toward
hyperparameter configurations outperforming the baseline (marked in red). This is accompanied
by an increased number of high-performing models compared to the baseline. We then construct
ensembles from the top-K configurations and train each member for 64K steps. Finally, we apply
linear regression to re-weight the ensemble members, as discussed in Section 3, to further improve
performance.

0

100

200

300

#
 H

ig
h
 P

er
fo

rm
in

g
M

od
el

s

0 100 200 300 400 500

Evaluations

10−2

10−1

O
b
je

ct
iv

e

Trajectory

Successes

Baseline

Model count

Figure 5: Hyperparameter search trajectory. Starting with the baseline configuration, the search
balances the exploration and exploitation which leads to increasingly better models depicted by the
solid black line. The number of high performing models increases accordingly.

9

Table 3: Hyperparameter search space
Variable Names. Type Range/Choice Baseline

padding int [1, 16] 8
padding_type str [‘constant’, ‘reflect’,

‘replicate’, ‘circular’]
constant

coord_feat bool [True, False] True
lift_act str [‘relu’, ‘leaky_relu’,

‘prelu’, ‘relu6’, ‘elu’,
‘selu’, ‘silu’, ‘gelu’,
‘sigmoid’, ‘logsigmoid’,
‘softplus’, ‘softshrink’,
‘softsign’, ‘tanh’,
‘tanhshrink’, ‘threshold’,
‘hardtanh’, ‘identity’,
‘squareplus’]

gelu

num_FNO int [2, 32] 4
num_modes int [2, 32] 16
latent_ch int [2, 64] 32
num_projs int [1, 16] 1
proj_size int [2, 32] 32
proj_act str [‘relu’, ‘leaky_relu’,

‘prelu’, ‘relu6’, ‘elu’,
‘selu’, ‘silu’, ‘gelu’,
‘sigmoid’, ‘logsigmoid’,
‘softplus’, ‘softshrink’,
‘softsign’, ‘tanh’,
‘tanhshrink’, ‘threshold’,
‘hardtanh’, ‘identity’,
‘squareplus’]

silu

lr float [10−6, 10−2] 10−3

weight_decay float [0, 0.1] 0

B.5 Additional results

We list the visualizations of the single time-stepping prediction, autoregressive rollout, and parametric
sensitivity estimates of all ocean states in this section.

For the single time-stepping prediction of all ocean states, Figure 6 visualizes the baseline performance
on a testing data point. At the sea surface (depth 0), the baseline model captures state fields that
closely resemble the true ocean states. However, compared to the zonal and meridional velocities,
forecasts of the other states exhibit relatively larger fraction errors. Such errors can reduce the
reliability of adjoint sensitivity estimates and accelerate error accumulation during autoregressive
rollout, underscoring the need for improved modeling of ocean dynamics. For this particular case, the
best model from HPO does not show a clear improvement over the baseline, reflecting only marginal
performance gains. In contrast, the Top-10 ensemble improves the forecast of layer thickness, yielding
lower fraction errors than both the baseline and optimal models. The weighted Top-10 ensemble
performs similarly to the uniform Top-10 ensemble, with both ensembles outperforming the baseline
and single best models.

Figure 7 shows the parametric sensitivity estimates from all models considered in this work across
the ocean states. Although the baseline and best models produce similar forward predictions, their
sensitivity estimates differ substantially. In contrast, the two ensembles exhibit only marginal
differences in sensitivity estimates and show strong agreement in predictive uncertainty.

10

True states

Baseline

Best

Ensemble
(uni. w.)

Ensemble
(lrn. w.)

Figure 6: Visualization of the single-step model predictions at the sea surface. The top most row
shows the true ocean states; in each inset thereafter, the top row is the predicted states and bottom
row shows the fractional error of the predicted fields.

11

(a)

(b)

(c)

(d)

Figure 7: Time-averaged parametric sensitivity of ocean states at the sea surface with respect to the
parameterization. The order of the states are layer thickness, zonal velocity, meridional velocity,
temperature, and salinity. (a) baseline; (b) optimal model; (c) Top-10 ensemble; (d) Weighted Top-10
ensemble.

12

	Introduction
	Neural Surrogate and Deep Ensemble
	Numerical Experiments
	Conclusion
	Methodology details
	Experiment details
	Data generation
	Data preprocessing
	Model training and evaluation
	Hyperparameter optimization details
	Additional results

