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“Hello everyone, I’'m Devi Ayyagari, a PhD student at Dalhousie University. Today I’'m introducing N-MARINE —a North Atlantic underwater image dataset for fish
detection and classification. I'll walk through the dataset, the baseline we’re releasing for benchmarking, and—most importantly —why datasets like this are essential for
accelerating climate-aware marine monitoring. I'll also briefly highlight the gaps between ecologists and computer scientists, and how we can enable better collaboration

by being intentional about the datasets and the baselines we release.”
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The Need for Scalable and
Non-Invasive Monitoring tools

¢ Oceans are vital: Oceans cover 71% of Earth, act as a major
carbon sink, and sustain the livelihoods of millions in coastal
communities.

<xe ocean s .

¢ Rapid warming is reshaping oceans: shifting species ranges,
population collapses (e.g., snow crab), and increasing policy
tensions.

¢ Oceans are changing: With warmer waters, >80% of marine
life is moving and changing breeding/feeding patterns.

e Immediate need: scalable, non-invasive tools to monitor marine
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Oceans cover ~71% of Earth and are a major carbon sink and support millions of coastal livelihoods.

In 2025, the ocean remains exceptionally warm: ocean heat content is at record highs (set in 2024), the ocean continues to absorb ~90% of excess planetary heat.

This rapid warming is reshaping ecosystems.
With warmer waters, >80% of marine life is moving poleward and deeper, altering breeding/feeding patterns and management lines.

For example, an estimated 10 billion snow crab—about 90% of the stock—disappeared off Alaska between 2018 and 2021, putting heavy pressure on a fishery worth
over $150 million.

We need systematic, scalable, non-invasive monitoring to track ecosystem health and catch these shifts early—after all, we cannot manage what we do not measure.
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Traditionally, we’ve monitored marine populations with tags, trawl/field surveys, and on-deck visual observations. These are invasive, labor-intensive, and don’t scale.

Newer, non-invasive tools are changing that:
Acoustic sensors — uses sound to detect and size schools and map habitats.
Underwater cameras — fixed or baited systems that capture species, behaviors, and habitat.

eDNA - detects species from genetic material in water samples.

However, these sensors generate massive, multi-format data streams—far more than humans can review.

That’s where machine learning can help.



Burden shift from collecting data to
annotating data

Bridging gap between
ecologists and ML
researchers

Machine learning potential to
analyze this large volume of data

» Easily accessible datasets

* Data Splits Published

* Species - not merely a
generic published

» Baseline detectors published

Machine learning can triage massive sensor streams, but to analyze behavior, count individuals, and estimate populations, it needs large volumes of high-quality
annotations.

As a result, the bottleneck has shifted from collecting data to annotating it—work that demands ecologists with specialized training.

Despite unprecedented data, we’re still far from turning it into actionable insight.

To bridge ecology and computer science and truly accelerate monitoring, we need data systems and pipelines that process the raw data and focus scarce expert time
where it matters most—interpreting model results and deriving actionable insights such as predicting species shifts and informing management strategies.

We think that Public, open datasets —from diverse regions, ecosystems, and camera systems—with exhaustive annotations, strong baselines, and species labels down
to the lowest taxonomic level—that form the foundation for developing transferrable generalizable models are a practical way to do that.



Bottleneck:

Little region specific
data. Data concentrated
in reef habitats, on fish
boats or in fish markets

Proposed solution:

North Atlantic specific
underwater image dataset

Prior study: Public dataset survey + pre-training
experiments = modest improvements; visibility &
habitat shifts still dominate errors. (ICES J. Mar.
Sci., 2024)1

11CES Journal of Marine Science (2024), article fsaf039. https://academic.oup.com/icesjms/article/82/4/fsaf039/8105847
Pic courtesy: All the images taken from the corresponding datasets

We surveyed existing public image datasets and evaluated how they can be used to train machine learning models with small, locally annotated datasets, published in
ICES this year. The core gap we found is that public data is concentrated in reefs, fish markets, and on-deck footage, while deep-underwater datasets are severely
underrepresented. As a result, models trained under these conditions struggle to adapt to region-specific datasets acquired in deep water. This underscores the need for
region-specific benchmarks.


https://academic.oup.com/icesjms/article/82/4/fsaf039/8105847

N-MARINE at a Glance

Acquisition: Baited
cameras on crab pots
with light

Depth:
450 -500 m

Location: Small portion of
the Northeast
Newfoundland Slope
Marine Refuge

Annotation:All groundfish
labeled (incl. occluded/
truncated). Bounding box

in TLBR format, species +23,936 underwater images (1920x1080), ~30 GB total.

hame 0 species (+ negatives), ecologist-annotated (DFO), multiple individuals/frame.

To that end, we publish N-MARINE - a deep underwater image dataset acquired in low light conditions in North Atlantic Ocean. The image here is a representative
sample of images in the dataset.

The dataset was acquired using baited underwater cameras mounted on crab pots with light attached to it at depths of roughly 450-500 m. The location is a small
portion of the Northeast Newfoundland Slope Marine Refuge. An expert ecologist at DFO labeled all 9 species of groundfish in the dataset, including occluded or
truncated individuals.

Contains 23,936 images—about 30 GB. Boxes are stored in TLBR format with the species name.

This dataset was originally acquired to study the impact of seismic activity in the small portion of the marine refuge.

Alongside the data, we train a YOLOvV7 baseline to detect the 9 different ground fish species in the datasets dn publish the baselines as well. Datasets published on open
Canada portal

Baselines on hugging face
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We trained a **YOLOv7** detector on N-MARINE using a **fixed 85/15 video-level split™ to prevent train—test leakage. There is class imbalance in the dataset some
species (e.g., Atlantic Cod) are common, while others (e.g., Northern Wolffish) are rare.
Note: “*Whelk* and **Northern Wolffish** do not appear in the **test* split.

We have two Key observations

Firstly, Spinytail skate (the rarest class in the test set) outperforms Atlantic halibut. We hypothesize that this is because spinytail skate comes from a **crisp video**, while
halibut often **kicks up sediment™*, creating turbidity that suppresses detection. We’ll show examples next.

Secondly, A model trained with **inverse-frequency class weights** - to offset the bias of larger sample size; performed **slightly worse** than the unweighted baseline.
We are curious if exploring other loss functions like**focal loss**and **targeted augmentations™* for rare classes would improve tail performance without sacrificing head-
class precision.



Challenges for the Al community
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Over-prediction of
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inflates false positives in busy
scenes.

Example detections: columns 1-2 show correct detections;
columns 3—-4 show typical errors

Here are few challenges with using our baseline detector to detect ground fish in the dataset.

The left two columns, shows examples where the model performs well—clear water, clean silhouettes, and the model boxes the fish correctly.

Last 2 columns, the model struggles: the model misses detections when fish are partially occluded —for instance, one fish behind another simply disappears to the
model.

The problem gets worse in turbid footage effecting performance of species like Atlantic halibut.

We invite the ML community to tackle these challenges: design pipelines that are visibility-aware, use temporal tracking to recover through occlusions, and treat rare
classes explicitly so these models can perform well in real, messy ocean data.



Discussion | Using N-MARINE

e Strong domain sensitivity: Small . * Train & stress-test across datasets: Build detectors/classifiers
changes in lighting, habitat, or species : by combining multiple marine datasets to improve robustness
> > .
: to new acquisition setups and shifting species distributions;

mix cause site-to-site drift; models that . . .
evaluate under turbidity, low light, and occlusion.

work in one deployment often need

. ¢ Cross-dataset transfer: Run pretrain — finetune experiments
adaptation/new labels elsewhere. P P

(e.g., OzFish — N-MARINE) to assess generalization and

e Active learning pipelines: combine the augment smaller datasets.
data growth with self-/active-learning  Applied workflows: Use as a starting point for abundance
steps to focus labeling efforts : estimation, behavior analysis, and semi-automated
. annotation.
e Collaboration: Invite community to * Teaching & upskilling: Provide an educational resource that
contribute new sites/species; align with . bridges ecology and computer vision and trains the next

self/active learning. generation.

Baseline
Dataset object detector

Two takeaways. First, models are very domain-sensitive—small shifts in lighting, habitat, or species mix cause performance to drift, so a model that works at one site
often needs adaptation or new labels at the next. This emphasizes the need active-learning pipelines: let the system surface the hardest, most uncertain frames so
ecologists spend time where it matters in correcting model suggestions. And we hope to see more open datasets from diverse regions with diverse habitat and species
distributions enabling us to develop generalizable models.

Second, on using N-MARINE. We anticipate that researchers use it to stress-test models under turbidity, low light, and occlusion; do cross-dataset transfer—pretrain on
N-MARINE to boost performance on small local datasets. It could also be a starting point for downstream tasks like abundance estimation, studying fish behavior, and
semi-automated annotation, and most importantly, we think it would be a valuable teaching resource that bridges ecology and computer vision. If you want to dive in, the
left QR is the dataset; the right QR is the baseline detector.
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Thanks for listening. | am excited to see what the marine and computer science community builds with this dataset! We hope that N-MARINE accelerates non-invasive,
scalable monitoring in the North Atlantic and sparks collaboration on robustness under turbidity, transfer learning, and open-set recognition.
I’m happy to connect about data access, training details, or integration into monitoring pipelines.

| want to acknowledge and thank my advisor Dr. Whidden, Maurice - undergrad visiting student in our lab, DFO and the ecologists for the dataset and the annotations,
DRAC for compute resources and NSERC and OFlI for the funding for the development of this work!



