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Abstract

Scaling marine ecosystem monitoring is increasingly urgent as ocean warming ac-
celerates ecological change. Current techniques like trawling are invasive, harmful
to habitats, and infrequent, leading to missed shifts in species distributions such as
the snow crab collapse in the Bering Sea after the 2018–2019 marine heatwave and
the spread of invasive European green crab in Atlantic Canada. Machine learning
offers a pathway to scalable, automated monitoring, but progress in regions such
as the North Atlantic has been constrained by the scarcity of annotated data. We
present N-MARINE, the first open-source North Atlantic underwater image dataset
for groundfish detection and classification. It contains 23,936 ecologist-annotated
ocean-floor camera images across nine species, with bounding boxes, standardized
splits, and YOLOv7 baselines (best mAP@0.5 = 0.808). N-MARINE provides a
foundation to build upon and advance research on generalizable visual representa-
tions and transfer learning for regional underwater ecosystems.

1 Introduction

The oceans cover 71% of Earth’s surface, function as a major carbon sink, and support the welfare and
livelihoods of millions in coastal communities[1, 2]. In 2018, about 38% of the global population lived
within 100 km of the coast [3]. The ocean also sustains substantial economic activity: international
ocean-economy trade amounts to trillions of U.S. dollars, and the export value of fish and fishery
products alone reached $156 billion in 2021 [4]. The ocean is warming rapidly; in 2024, global
sea-surface temperatures and ocean heat content reached record highs, intensifying ongoing climate
trends [5]. Consistent with warming, many marine species are shifting their geographic ranges, with
leading edges generally moving poleward and/or deeper [6]. Recent events underscore the ecological
and socioeconomic stakes—for example, the abrupt collapse of eastern Bering Sea snow crab to
historical lows by 2021 [7]. Projections indicate that—regardless of emissions scenario—at least
37% and 54% of straddling fish stocks will shift between Exclusive Economic Zones (EEZs) and
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Species Train inst. Train vids Test inst. Test vids Total inst.
Gadus morhua (Atlantic Cod) 3,448 98 725 23 4,173
Macrourus berglax (Roughhead Grenadier) 3,308 42 609 8 3,917
Amblyraja radiata (Thorny Skate) 2,701 27 583 6 3,284
Sebastes mentella (Redfish Mentella) 3,186 27 174 3 3,360
Anarhichas lupus (Striped Wolffish) 2,658 14 374 3 3,032
Hippoglossus hippoglossus (Atlantic Halibut) 3,329 13 149 1 3,478
Bathyraja spinicauda (Spinytail Skate) 930 4 58 2 988
Buccinum undatum (Whelk) 869 1 0 0 869
Anarhichas denticulatus (Northern Wolffish) 789 1 0 0 789
Negative (background) images 2,558 151 442 26 3,000
No. of sampled videos 157 28 185
Table 1: Class distribution of object instances and sampled videos across training and test splits.

the high seas by 2030 and 2050, respectively [8]. These trends heighten the urgency of systematic,
scalable monitoring of marine ecosystems [9].

Traditionally, marine ecosystem monitoring relies on deck-based visual surveys, trawls, gill nets,
and animal tagging—methods that can be lethal for some organisms and, in the case of bottom
trawls, disturb benthic habitats [10]. Over the past decade, non-invasive, sensor-based approaches
have expanded: active acoustics (scientific echosounders) to estimate fish abundance/biomass;
passive acoustics (soundscape recordings) [11] to monitor vocal taxa and habitat use; environmental
DNA (eDNA) [12] to detect species—including rare/cryptic and invasive taxa—and characterize
taxonomic composition; and optical platforms (BRUVS and towed or stationary cameras) to acquire
underwater video and still images [13, 14]. These sensors now generate vast, diverse datasets across
habitats and time, yet existing workflows cannot scale quickly enough to measure and interpret
rapid ecological change. Advances in computing power have made complex machine-learning
analyses widely accessible, offering the potential to automate detection, classification, and abundance
estimation [15, 16], but progress is constrained by the scarcity of well-annotated training and
benchmark datasets [17].

Existing open datasets for underwater detection and classification—e.g., FathomNet [18], Deep-
Fish [19], and OzFish [13]—primarily cover other regions, habitats, and species; to our knowledge,
none focus on North Atlantic waters. N-MARINE addresses this gap by providing ecologist-annotated
imagery of groundfish from a region that is uniquely important: it is currently the only province
in Canada with an active offshore oil and gas industry [20]. It is designed not only as a standalone
dataset but also to complement existing corpora—supporting transfer learning, enabling systematic
evaluation of how models trained in one region generalize to others, and facilitating integration into
larger training pipelines. By releasing images, labels, standardized splits, and baseline models, our
goal is to lower adoption barriers and provide a resource that others can build upon, advancing scalable
marine ecosystem monitoring and the development of more generalizable visual representations.2

2 Dataset description

N-MARINE is a marine-taxa detection and classification dataset collected in 2021 using underwater
video cameras mounted on crab pots equipped with lights and bait, deployed at depths of 400–500 m
within the Small portion of the Northeast Newfoundland Slope Closure. Further details on survey
design and acquisition procedures are provided in [21]. The dataset contains 23,936 images (1920 ×
1080 px; 1 MB per image; 30 GB total), each annotated with bounding boxes and species labels.
Nine marine species—annotated at the species rank to facilitate future hierarchical learning—are
documented, and images may contain multiple individuals per frame.

N-MARINE is a curated subset of 185 videos drawn from a larger corpus of 221 videos originally
collected to study the impacts of seismic oil and gas exploration surveys. Each video is approximately
five minutes long, recorded at 30 fps. From each video, 1,500 frames were annotated, but only a
subset of these annotated frames is included in the open-source release, resulting in a total of 23,936
images in the dataset. All groundfish, including partially occluded and truncated individuals, were
labeled by a Fisheries and Oceans Canada (DFO) ecologist in DIVE [22].

2Models are uploaded on https://huggingface.co/WhiddenLab/N-MARINE_baseline_classifiers, the dataset is available at
https://open.canada.ca/data/en/dataset/2ae46860-f82a-4127-bb1f-b02e36ef6a70, and supplementary training material is
uploaded on https://github.com/Pentaerythrittetranitrat/N-MARINE_dataset_supplementary.
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YOLOv7 Model Precision Recall mAP@0.5 mAP@[0.5:0.95]
With class weights 0.783± 0.0223 0.757± 0.030 0.784± 0.025 0.464± 0.020
Without class weights 0.807± 0.036 0.764± 0.014 0.808 ± 0.007 0.494± 0.008

Table 2: Baseline YOLOv7 performance on N-MARINE (mean ± std. across cross-validation folds).

Figure 1: Example detections from the best YOLOv7 baseline on N-MARINE: columns 1–2 show
correct detections; columns 3–4 show typical errors (misses and misclassifications)

We organize images by source video with a video identifier and frame index in both filenames and
label files, allowing identification of the original video for each image. Up to 3,000 positive images
were randomly sampled per species, with all available images used when fewer than 3,000 examples
were available. Additionally, 3,000 negative (background) images were randomly selected from the
185 videos. We provide annotations in YOLO-style per-video CSV files, containing both absolute
pixel coordinates (top-left and bottom-right) for visualization and normalized coordinates for training.

3 Baseline object detector

We trained a baseline object detector using the YOLOv7[23] framework to characterize model
performance under fully supervised training conditions on the N-MARINE dataset and to perform
detection and classification of nine marine species in the dataset. To train this detector, the dataset
was first split into training and test sets at the video level to prevent leakage between splits. Videos
were randomly assigned in an 85/15 ratio while preserving class balance where possible. In rare
cases where a species appeared in only one video—specifically, Buccinum undatum(Whelk) and
Anarhichas denticulatus(Northern Wolffish)—if that video was initially assigned to the test set, it was
reassigned to the training set so the model would encounter that species during learning. Per-species
counts by split are reported in Table 1.

The test split was fixed at 15% of videos, and within the remaining training videos, five stratified,
video-level folds were defined for statistical analysis of the baseline. In each fold, the training portion
was further partitioned into an 85/15 train/validation split (still at the video level to avoid leakage).
Final results are reported on the fixed test set using the model with the highest validation mAP in its
corresponding fold (the training curves are attached in the Appendix), and the species distributions
and exact file lists for all folds and splits will be published in the repository. We observed notable class
imbalance in the dataset and investigated whether applying class weights could improve performance.
For class c with nc positives out of N training examples, we set pos_weightc = (N − nc)/nc.
Training details for the object detector are in the Appendix. We include the configuration files and
command lines for full reproducibility.

4 Discussion

The YOLOv7 baseline without class weighting achieved the highest overall performance, with
mAP@0.5 = 0.808 ± 0.0067 and mAP@[0.5:0.95] = 0.494 ± 0.0076, alongside a precision of
0.8066±0.0360 and recall of 0.7640±0.0140 (Table 2). Introducing inverse-frequency class weights
slightly improved mAP for Spinytail skate (increasing the median mAP@0.5 to 0.61 from 0.52) - a
rare species but reduced aggregate mAP to mAP@0.5 = 0.784± 0.0245 and mAP@[0.5:0.95] =
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0.4644 ± 0.0203. This suggests that, rather than relying on naive re-weighting, model training
could benefit from more targeted imbalance-handling strategies such as focal loss, targeted data
augmentation for rare classes, class-aware sampling, per-class confidence thresholds, or increasing
the diversity of training data for under-represented species.

Figure 2: Per-class mAP@0.5 on the fixed test split across five
folds for YOLOv7 baselines

Following the aggregate results,
we examined per-class perfor-
mance to assess how species
representation influenced detec-
tion. Class-wise results (Fig-
ure 2) show that Atlantic halibut
(median mAP@0.5 ≈ 0.141)
performs much worse than all
other classes. The confusion
matrix for the model with the
best test mAP (see in Appendix)
shows an extremely high back-
ground false-negative rate for
halibut (0.99), indicating fre-
quent misses. These omissions
are likely driven by visibility
limitations—poor contrast, par-
tial occlusion, turbidity—with
all halibut test examples coming
from a single video where sedi-
ment clouds obscured body out-
lines. Figure 1 illustrates com-
mon failure modes—partial oc-
clusions, turbidity, overlapping
individuals—seen across classes. Overall, poor performance is more strongly linked to missed
detections under difficult visibility than to inter-class confusion (as can be observed in the confusion
matrix in the Appendix), and abundant species risk over-prediction in background regions. Improving
rare-class performance will require novel algorithms and expanded data collection to ensure adequate
representation in both training and evaluation splits.

These findings underscore a broader challenge: detector performance is highly sensitive to acquisition
conditions. Small changes in camera placement, lighting, turbidity, habitat background, or local
species composition can yield error patterns similar to those observed for halibut. Consequently,
models that work well in one deployment often require adaptation—or new annotations—before
being applied elsewhere. In practice, the bottleneck has shifted from data collection and frame-by-
frame counting to obtaining sufficiently high-quality labels for each new dataset. Large observatory
networks such as Ocean Networks Canada record thousands of hours of seafloor video, yet much
of it remains underutilized due to limited annotation capacity. N-MARINE provides a reproducible
baseline, but sustainable monitoring will require workflows that combine selective expert labeling,
domain adaptation, and active learning to handle the diversity of real-world conditions.

This need is particularly acute in the Northwest Atlantic, including the Northeast Newfoundland Slope
where these data were collected. This shelf system has warmed rapidly in recent decades and is among
the fastest-warming ocean regions globally [24, 25, 26], with documented impacts on marine habitats
and fisheries. Shifts in thermal habitats are already driving distributional changes in key species
such as gadids and Atlantic Halibut [27, 28], underscoring the urgency for consistent, high-resolution
biological monitoring [29]. While DFO has begun standardizing environmental tracking through
initiatives like the Newfoundland and Labrador Climate Index [24], complementary species-level
image datasets remain scarce. More broadly, marine ecosystems worldwide face climate-driven
shifts in distribution, timing, and abundance, yet many regions still lack sustained, high-resolution
biodiversity records. To address this gap, we release the curated N-MARINE dataset, with the full
set of 221 annotated videos available upon request for specialized research needs. By making this
data accessible, we aim to close critical knowledge gaps, foster collaboration between computer
vision engineers and ecologists, and support policy development to mitigate the impacts of a rapidly
changing ocean.
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5 Appendix

5.1 Baseline Training Details

Bounding box annotations were initially provided in TLBR format (absolute pixel coordinates for
the top-left and bottom-right corners). These were converted to YOLO format, with per-video
CSVs split into individual per-image text files containing normalized coordinates and class labels.
Each YOLO-compatible annotation file was stored in the same directory as its corresponding image,
following YOLO training requirements.

All baseline models were trained using the official YOLOv7 implementation (commit
a207844b1ce82d204ab36d87d496728d3d2348e7) with the authors’ default optimization, aug-
mentation, and inference settings, unless otherwise specified. The initial learning rate (lr0) was
reduced from 0.01 to 0.001. Models were initialized with MS COCO pre-trained weights, modifying
the detection head to output the nine N-MARINE classes. Training was run for 50 epochs with a
batch size of 32, letterboxed inputs of 640× 640 pixels, and an NVIDIA A100 SXM4 40GB GPU.
Inference was performed with a confidence threshold of 0.001, NMS IoU threshold of 0.65, and no
test-time augmentation (TTA). For experiments using class weighting, only the scalar classification
positive-weight parameter (cls_pw) was adjusted; all other configuration parameters remained at
default values.
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(a) With class weights.

(b) Without class weights.

Figure 3: Training and validation loss curves (box loss, classification loss, and objectness loss) for
five cross-validation splits of the YOLOv7 model. Smoothed curves represent per-epoch loss values,
showing consistent decreases in training loss and variation in validation performance across splits.
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Figure 4: Confusion matrix for the model from the split with the highest test set mAP, trained without
class weights. Values are normalized per true class using the test set.

10


	Introduction
	Dataset description
	Baseline object detector
	Discussion
	Appendix
	Baseline Training Details


