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Abstract

Climate change is increasing extreme events. Despite advances in artifi-
cial intelligence-based global weather forecasting, most benchmarks remain
deterministic, which limits uncertainty representation and extremes predic-
tion skill assessment. This study examines how three state-of-the-art deter-
ministic data-driven models, namely FourCastNet v2/SFNO, GraphCast,
and FuXi, respond to input perturbations, evaluating the corresponding
ensembles in forecasting extremes. 50-member ensembles are created us-
ing perturbation methods based on spherical Gaussian noise, hemispherical
centered bred vectors, and huge ensembles. Focusing on August 2022, when
devastating floods hit Pakistan, we compare our ensembles against deter-
ministic ERAb5-initialized forecasts and the ECMWF Integrated Forecast-
ing System Ensemble for numerical weather prediction. While the huge
ensembles method outperforms those based on Gaussian noise and hemi-
spherical centered bred vectors in detecting the associated extreme precip-
itation event, all models still underperform the numerical weather model,
suggesting promising research avenues.

1 Introduction

Climate change is increasing the frequency and severity of extreme weather events [, 0],
making timely, reliable forecasts and earlywarning systems essential for climate adapta-
tion, especially for low-income and developing countries [3]. Recent developments in Arti-
ficial Intelligence-based Weather Prediction (AIWP) architectures using transformers [@-7],
Fourier neural operators [R, O] and Graph Neural Networks (GNNs) [0, 0] have pushed
weather forecasting skill over what is considered state of the art for Numerical Weather Pre-
diction (NWP) models, which conversely rely on complex equations and require expensive
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Figure 1: Overview of the methodology followed in this study, including the initial condition
perturbation, forecasting with AIWP models, and evaluation of results stages.

computational resources. The Artificial Intelligence/Integrated Forecasting System (AIFS)
by ECMWF alongside NWP has marked a significant milestone [2]. In addition, genera-
tive approaches, such as GenCast [I3], can produce distributions of potential future weather
states. Similarly, SEEDS [i4] generates large ensembles based on limited NWP forecasts.

Given the inherently chaotic nature of the atmosphere, it is crucial to account for uncertain-
ties in both the initial conditions and the models themselves. While early AIWP research
focused on deterministic forecasts, a shift toward probabilistic methods is emerging, incor-
porating Uncertainty Quantification (UQ) and novel perturbation techniques. Indeed, UQ
plays a crucial role in enhancing the reliability and effectiveness of weather forecasting mod-
els, particularly for extreme events. Uncertainty is generally categorized into two types:
aleatoric (due to intrinsic randomness and noise within the data) and epistemic (arising
from model limitations) [I5]. Recent efforts have shown the potential of UQ applied to de-
terministic ATIWP to produce probabilistic weather forecasts [I6-I8]. Specifically, ensemble
forecasting addresses aleatoric uncertainty by generating multiple simulations of the initial
conditions to represent a range of possible outcomes, forming the basis for probabilistic
forecasts [19].

The objective of this study is to explore how different ATWP models respond to input pertur-
bations in extreme weather forecasting, specifically addressing how to create probabilistic
forecasts based on ensembles from deterministic models and how these ensembles handle
UQ. To the authors’ knowledge, no such ensemble comparison has been conducted, despite
a prior analysis specifically made for deterministic forecasts [20]. Taking the August 2022
Pakistan floods driven by extreme precipitation in the region as a case study [3, 21], we will
investigate the capabilities and limitations of ATWP models in capturing extreme events.

2 Methodology: Forecasting Models and Perturbation Methods

Figure 1| illustrates the methodology followed in this study. First, starting from ERAbH
reanalysis data [22] as initial conditions, we apply several perturbation methods, each of
them generating M = 50 different initial states. Then, these states are provided to diverse
6-hourly resolution ATWP models, resulting in M = 50 different predictions for each, which
constitute ensemble forecasting members for up to a 10-day lead time. The ensembles for
all perturbation methods and ATWP models, along with the ECMWF Integrated Forecast-
ing System Ensemble (ENS) [23], are finally evaluated at daily resolution (accumulated
precipitation) against the ground-truth ERAS to assess their forecasting capabilities. See
for further details.



For this study, we have selected ATWP models that fulfill the following conditions: i) They
achieve state-of-the-art performance for deterministic medium-range weather forecasting;
ii) Their code implementation and pre-trained weights are open source; and iii) They all
forecast total precipitation. Based on these criteria and our literature review, we identified
three architectures: 1) FuXi, a cascading U-Transformer and Swin Transformer V2 model
[6]; 2) GraphCast, a GNN-based architecture [I1]; and 3) SFNO, a Spherical Fourier
Neural Operator-based model [R].

Then, building upon previous weather studies, we have considered three perturbation meth-
ods to evaluate their skill concerning extreme event prediction: 1) Gaussian, which adds
spherical Gaussian noise to the input and is used here as a baseline [16]; 2) Hemispher-
ical Centered Bred Vectors (HCBYV) [24], which relies on bred vectors scaled separately
for each hemisphere; and 3) Huge Ensembles (HENS), an initial condition perturbation
method presented in [I7, (8] similar to HCBV, but considering the prediction error to scale
the perturbations. See for additional details on these methods.

Last but not least, we have chosen three complementary evaluation metrics: 1) the well-
known Root Mean Squared Error (RMSE) as a deterministic score; 2) the Continuous
Ranked Probability Score (CRPS), which constitutes an overall probabilistic score; and 3)
the Receiver Operating Characteristic Skill Score (ROCSS), a probabilistic score tailored to
extremes (see for metric definitions). Implementation details are in Appendix D).

3 Experimental Results and Discussion

August 2022 Extreme Precipitation in
Pakistan: Consistent with previous stud-
ies, the analysis of ERA5 data reveals that
the Pakistan region received extreme rain-
fall on multiple days throughout August
2022 [21, 25]. Deterministic AIWP failed to
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Figure 2: ROCSS values at the 99th per-
centile of the ERA5 1990-2020 climatology
for daily accumulated precipitation, across 10
lead times, given the different ATWP models
in our study and the Pakistan region in Au-
gust 2022. The higher the ROCSS values, the
better the performance.
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Figure 3: Daily accumulated precipitation spread for the different ensemble models (ENS,
AIWPs) over Pakistan on 18th August 2022 for a 3-day lead time forecast. Ground-truth
ERAS5 spatial distribution for daily precipitation is shown in the top left corner. Daily
average geopotential height at 500 hPa is also displayed as contour lines. None of the
ATWP ensembles manage to produce a spread spatial distribution similar to the ground
truth and the accurate one provided by ENS for this forecast, although FuXi HENS comes
closer.

saw the highest amount of precipitation in

August (see Figure 3), FuXi together with

HENS seems to more closely match the ENS spread. Still, none of the ATWP models
accurately display the uncertainty for the forecast of this event.

Global Quantitative Results: When looking at the computed metrics worldwide for
August 2022 (see [Appendix F|), Gaussian fails to generate sufficient ensemble spread, leading
to poorer performance. HENS and HCBYV produce ensembles better aligned with ENS. FuXi
consistently performs best in CRPS, with GraphCast closely matching it until around 5-days
lead time, after which FuXi benefits from its cascading architecture. SFNO underperforms,
particularly for precipitation. At longer lead times, all models converge in skill, with HENS
remaining the most effective perturbation strategy.

4 Conclusions and Future Work

Early warning systems for extreme events are key to climate adaptation. The three de-
terministic AIWP models in this study are not able to capture the intensity and spatial
distribution of the extreme precipitation in Pakistan in August 2022. Perturbing the inputs
using HENS brings us closer to capturing the uncertainty of the forecasts for this event, but
fails to reach the performance level of ENS, especially at longer lead times.

The global results broadly confirm the Pakistan case study: Gaussian perturbations are
weakest, HENS is strongest, but none match ENS performance. Interestingly, GraphCast
has an advantage over FuXi in the Pakistan region, not seen in the global context. Further



study using explainability methods could identify the root cause for such differences, as
exemplified in [27]. In addition, alternative approaches, such as multi-model architecture
ensembles [28], model checkpoint ensembles (as proposed in HENS), post-hoc uncertainty
estimation methods [I6], ensemble member selection and clustering procedures [29], and
probabilistic ATIWP models [I3] are promising avenues to produce skillful data-driven ex-
treme event forecasts.
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A Data Description

Two data sources are considered in this study: 1) ERA5 reanalysis data [30, 81], which
serves both as initial conditions for our forecasting models and as ground truth to evaluate
the forecast performance; and 2) IFS [82], which is taken as a benchmark dataset to compare
the forecast skill of the AIWP architectures with respect to the NWP models, represented
by the ECMWF Integrated Forecasting System Ensemble (ENS) [23]. First, we use a subset
of the ERA5 ARCO [B1] variables required for prediction and evaluation, following [if],
with 6-hourly temporal resolution (see Mable—1 for the complete list). Additionally, we
incorporate the IFS, ECMWE’s leading NWP probabilistic system, i.e., the ENS [82]. To
enable a fair comparison between the AIWP model and IFS outputs, all data used in this
study are downscaled to a common 1F (E 1t spatial resolution, using bilinear interpolation
[33]. The evaluation is conducted based on the variables described in Mable 2.

Table 1: ERAS5 variables used for forecasting with AIWP models.

Variable | Description Unit Pressure levels (hPa)
z" Geopotential m?m=2
= Temperature M = 600, 500, 400, 300,
- . — 250, 200, 150, 100,
u U component of wind ms 50 — 13 levels
: —1
v? V component of wind ms
w Vertical velocity Pa s-1
msl”® Mean sea level pressure Pa -
ulOm"” 10m U component of wind ms -
v10m® 10m V component of wind ms | -
ul00m 100m U component of wind ms ! -
v100m 100m V component of wind ms | -
t2m"” 2m Temperature K -
sp Surface pressure Pa -
tcwv Total column water vapour kgm 2 | -
tp06~ Total precipitation 6 hourly accumulation | m -
Z Geopotencial at surface m?s 2 -
Ism Land sea mask 0-1) |-

%This variable is perturbed when using perturbation methods.
This variable is derived from pressure, q and t.
“This variable is accumulated in 6-hourly intervals from the original 1-hourly data.

Table 2: ERAS5 variables used for evaluating and benchmarking the ATWP models.

Variable | Description Unit
z500 500 hPa Geopotential m?s 2
t850 850 hPa Temperature K
t2m 2 m Temperature K
tp06 Total precipitation 6 hourly accumulation | m
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Figure 4: Hemispheric Centered Bred Vector (HCBV) perturbation method. Az500 repre-
sents a correlated spherical Gaussian noise added to the 500 hPa geopotential variable. h
represents the norm or size computed separately for the north and south hemispheres, and
interpolated in the tropics. d represents the integration depth, that is the number of recur-
sive cycles which the final perturbation is computed from. This perturbation is additionally
centered, so the perturbation vector is alternatively added and subtracted from the initial
conditions. Diagram adapted from [IR].

B Perturbation Methods

Gaussian: The Gaussian perturbation method applies a random spherical Gaussian field,
scaled with a fixed factor, to the input y. We used the Spherical Gaussian implementation
in [33]. Formally:

Ypert[n] = y[n] + s¢[n],

where n represents each input spatial location, s is the noise amplitude (scale factor), and
&[n] is the mean-zero spherical Gaussian random field value sampled for each spatial location
n.

Hemispheric Centered Bred Vector (HCBYV): The bred vector algorithm, firstly in-
troduced in [B4], is a perturbation method that is based on the fact that initial conditions
generated by data assimilation/reanalysis processes accumulate growing errors. To estimate
this growing error direction and magnitude, i.e., the bred vector A f, the weather prediction
model is used to create a perturbed forecast f, based on a small change in the initial condi-
tion (seed). We use a hemispherical-centered approach [I'7] where we do not only scale the
amplitude of Af by a factor s but also normalize the perturbation field in extra-tropical
regions (|latitude| > 70°, h(Af)) separately from the north, tropics, and south regions, i.e.,
Af =sx% W= ( Jf = ) (fu is the unperturbed forecast). In this study, we use an integration
u

factor of d :p3, following [27], recursively computing Af three times to better sample the
growing errors, which results in A f;. This is intended to more accurately reflect the uncer-
tainties in the analysis data and data assimilation process. Moreover, we use a correlated
spherical Gaussian noise for the 500 hPa geopotential variable as a seeding perturbation
method (Az500). The method is illustrated in [Figure 4.

Huge Ensembles (HENS): Huge ensembles is a slightly adapted HCBV perturbation
method [85]. The method makes use of the average RMSE at 48h for each of the perturbed
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variables and AIWP models to further tune the amplitude of the perturbation (sgpns =
RMSE x s). Similarly to HCBV, we use d = 3 as a parameter for the integration depth [Ig].

It should be noted that only the common input variables between all models were perturbed
(see Mable ). Moreover, we used a scaling factor s = 0.35 for all perturbation methods,
following [I°7].

C Evaluation Metrics

For the following metric definitions, y,; is the ERA5 value for each spatial location n (N

spatial locations in a study region) at time ¢ € {1,...,T}, being T' the number of forecast
(m)

ne  is the forecast provided by ensemble member m € {1,..., M}, where

timesteps, and g
M = 50.

C.1 Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) is a metric that measures the average magnitude of
errors between predicted and observed values [86]. It penalizes larger errors more heavily,
making it sensitive to outliers. Lower RMSE represents a better forecast. RMSE is defined
as follows:

| N - 2
RMSE = NE_:;(%—ZA )

C.2 Continuous Ranked Probability Score (CRPS)

The Continuous Ranked Probability Score (CRPS) is a scoring rule that measures the accu-
racy of probabilistic forecasts by quantifying the difference between the predicted cumulative
distribution function (CDF) and the observed outcome [36]. It generalizes the mean abso-
lute error to probabilistic forecasts. Lower CRPS points at better forecast skill. CRPS is
defined as follows:

(m) N g _ g0

m=1 m=1 k= ‘|

;| NI M
CRPS*Nigg MZ Ynt " — Ynt

C.3 Receiver Operating Characteristic Skill Score (ROCSS)

The Receiver Operating Characteristic Skill Score (ROCSS) is a metric derived from the
Area Under the ROC Curve (AUC) that quantifies the ability of a forecasting system to
discriminate between the occurrence and non-occurrence of an event, relative to random
chance [20]. In this study, the event of interest, i.e., extreme precipitation, is defined by a
threshold 7, which is set to the 99th climatological percentile from ERA5 data over 1990-
2020. We selected this percentile due to the record breaking nature of this event, according
to [26]. The computation of the ROCSS proceeds as follows:

1. Thresholding observations and ensemble forecasts. Given the threshold 7,
observations and ensemble forecasts are converted into binary outcomes. Then,
ensemble binary forecasts are converted into forecast probabilities:

M
Ont = l{ynt > T}a f7(zt - 1{y7(LT) > T}7 Tnt = Z fiT)’ Pt = M:— 1
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Here, 0, is the binary observation, f,ST) is the binary forecast of ensemble member
m, Tne is the ensemble vote count, and p,,; is the resulting forecast probability, using

Weibulls plotting position [37].

. Applying probability thresholds. To construct the Receiver Operating Charac-

teristic (ROC) curve, the forecast probability is converted back to binary outcomes
for each probability threshold 0 € [0, 1]:

67lt(9) - l{pnt Z 9}

. Calculating Hit Rate (HR) and False Alarm Rate (FAR):

ZTJY:I 23:1 1{0n:(0) = 1 Aoy = 1}
N T
Y n=12t=10nt

HR(0) =

)

N - 0 = Ont =
FAR(0) = 2n=1 Zzt—;_l{gv;:_(@()l—lo/\t)n 0}

. Constructing the ROC curve. The ROC curve plots the trade-off between hits

and false alarms across all probability thresholds:

{(FAR(6),HR(0)) : 6 € [0,1]}

. Computing the AUC:

1
AUCforecast = / HR(FAR_l(.’E)) dl’,
0

where FAR ™! () denotes the inverse mapping of the false alarm rate along the ROC
curve.

. Computing the ROCSS. Finally, the ROCSS compares the forecast AUC to a

reference (random) forecast, which has AU Cieference = 0.5:

AUCforecast - AUCreference

ROCSS =
1- AUCreference

A higher ROCSS indicates better discriminatory skill, with 1 representing perfect
skill and 0O corresponding to no skill.

Implementation Details

The NVIDIA-developed Earth2Studio framework [33] has been used for data handling, per-
turbing the input data and running predictions with various global weather forecasting
models. This modular and Python-based framework enables running large-scale inference
with multiple models and perturbation methods efficiently. To compute all evaluation met-
rics, we made use of the WeatherBench framework [36], as well as its binary hydroclimatic
extension introduced in [20].
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E Deterministic AIWP Forecasts for 18th August 2022

time = 2022-08-18
ERAS [ r sa—

TP24hr (mm)

Figure 5: Accumulated daily precipitation on 18th August 2022 in the Pakistan region, both
for ERA5 (ground truth, see subfigure on the left side) and the deterministic 3-day lead time
forecast provided by GraphCast, FuXi, and SFNO. Daily average geopotential height at 500
hPa is also displayed as contour lines.

F Global RMSE and CRPS for August 2022

o Gaussian HCBV HENS
55
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Figure 6: Ensemble mean RMSE per latitude, for a 3-day lead time worldwide forecast
in August 2022. The shaded area represents the ensemble mean RMSE variance. The
Gaussian perturbation method provides under-dispersive ensembles. HENS method most
closely match the ENS spread. SFNO performs worse on all variables and perturbation
methods, while GraphCast and FuXi perform at a similar level, but still not reaching the
dispersion of ENS.
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Figure 7: Global average CRPS over 10-day lead time for the different perturbation methods
and ATWP models and ENS, in August 2022. ENS showcases the best performance overall
for all metrics, except in the very short lead time range, where ATWP models are competitive.
HENS perturbation method most closely matches the CRPS of ENS.
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