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Abstract

This study presents a cross-disciplinary approach combining foundation models,
satellite imagery, and demographic health surveys to analyze the correlation be-
tween unregulated industrial activity and Acute Respiratory Infections (ARI) in
South Asia. We detect brick kiln and factory chimneys using a sequential trans-
former chaining method and a multispectral Chimney Index. These detections are
spatially joined with a geocoded dataset of ARI incidence developed from DHS
surveys across India, Pakistan, and Bangladesh. Our findings reveal a statistically
significant correlation between chimney density and ARI cases in children un-
der five, underscoring the urgent need for regulatory and health interventions in
high-emission zones.

1 Pathway to Climate Impact

Acute Respiratory Infections (ARIs) remain one of the leading causes of morbidity and mortality
in low- and middle-income countries (LMICs), especially among children. Previous studies have
linked the high prevalence of ARI with exposure to air pollutants such as sulfur dioxide (SO2),
nitrogen dioxide (NO2), and carbon monoxide (CO), frequently emitted by unregulated brick kilns
and industrial chimneys [1, 2, 3, 4]. These industrial sources not only release health-damaging
pollutants but also contribute to climate change through emissions of black carbon and greenhouse
gases, exacerbating local warming and air quality degradation. Thus, chimney smoke embodies a
dual burden—driving both respiratory disease and regional climate stress. In this work, we present a
pipeline that uses foundation models and satellite imagery to detect pollution sources and correlate
them with DHS health data.

2 Introduction

The Global Burden of Disease (GBD) framework has brought renewed attention to the worldwide
impact of infectious and non-communicable diseases. Although GBD provides a macrolevel view,
crucial gaps persist in the surveillance of Acute Respiratory Infections (ARI), particularly in low-
and middle-income countries [5]. ARIs remain a leading cause of morbidity and mortality in these
regions [6]. Many studies have shown that environmental factors, such as air pollution from factory
chimneys and climate variability, critically affect the prevalence and outcomes of diseases [1].

Despite the recognized burden, robust, high-resolution data linking ARI incidence to specific en-
vironmental parameters remain scarce. Large-scale data collection efforts like the Demographic
and Health Surveys (DHS) have generated valuable insights; however, these surveys are often un-
derutilized for in-depth spatial epidemiology due to challenges in data extraction, geocoding, and
integration with external environmental layers [7]. The Integrated Burden of Disease and Environ-
mental Monitoring System (IBDEM) aims to remedy these challenges by offering a framework that
merges DHS data, complete with cluster-level latitude/longitude coordinates—with environmental
and demographic indicators.
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(a) Detection of emission sources pipeline.
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(b) ARI geocoded data extraction pipeline.

Figure 1: End-to-end pipeline for mapping industrial emissions and respiratory health risk. (a)
Chimney detection using spectral indices and transformers. (b) ARI data extraction and geo-merging
pipeline.

Previous studies have also utilized data from MODIS, and Sentinel-5P to monitor air quality and its
effects on respiratory health [3, 4]. Others have integrated DHS data for spatial epidemiology [2].
We build upon our earlier work [7] where we used transformer models for chimney detection, now
incorporating health outcome datasets.

3 Data Sources

Chimney Detection Data: High-resolution satellite imagery for South Asia was obtained using
Google Earth Downloader1. From this imagery, a multispectral Chimney Index (CI) was derived
using Sentinel-2 bands to enhance the detection of industrial sites and brick kilns.

ARI Data: Acute Respiratory Infection (ARI) indicators and geospatial cluster coordinates were
extracted from the Demographic and Health Surveys (DHS)2. Data cleaning and geo-merging were
conducted following the DHS ARI Calculation script 3, ensuring harmonization of survey variations.

4 Chimney Detection Pipeline

A novel pipeline was developed for detecting brick kilns and industrial chimneys by combining
low- and high-resolution imagery with spectral indices and transformer-based models. Schematic
overview of these steps is shown in Figure 1 (a).

4.1 Chimneys detection using novel multi-spectral Chimney Index (CI)

A novel Chimney Index (CI) was developed using Sentinel-2 multi-spectral imagery to enhance the
detection of industrial sites. It combines the Normalized Difference Vegetation Index (NDVI), Burn
Index (BI), and Built-Up Index (BUI) with weighted contributions:

CI = (ω1 × (1−NDV I)) + (ω2 ×BI) + (ω3 ×BUI) (1)

Low NDVI values highlight non-vegetated regions, high BI indicates heat-affected areas, and high
BUI identifies urban zones. Their integration enables robust large-scale detection of chimneys and
industrial structures in South Asia, where emissions significantly impact respiratory health.

4.2 Chimneys detection using sequential transformer chaining mechanism

A sequential filtering pipeline was applied to high-resolution satellite imagery of urban areas. First,
a Vision Transformer performed broad classification with multiple prompts and a low confidence
threshold. Next, Remote CLIP was applied with higher thresholds to refine chimney detection, fol-
lowed by an additional filtering step targeting smokestacks. Manual review finalized the dataset.

1https://www.allmapsoft.com/geid/
2https://dhsprogram.com/
3https://github.com/DHSProgram/DHS-Indicators-R/blob/main/Chap10_CH/CH_DIAR.R
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This multi-stage chaining of foundation models with human validation produced a precise and reli-
able inventory of industrial structures.

5 Acute Respiratory Infection (ARI) Geocoded Data Extraction Pipeline

DHS survey data were decoded, harmonized, and geo-merged with cluster coordinates to construct
ARI incidence datasets at multiple spatial levels. Schematic overview is illustrated in Figure 1 (b).

5.1 Data Pre-processing and Integration

DHS datasets in .SAV format were decoded using official scripts to retain variable labels [8]. ARI-
related indicators (e.g., cough, difficulty breathing, confirmed cases) were extracted and converted
to CSV for analysis in Python and R. Geospatial files (shapefiles and cluster coordinates) were stan-
dardized to the WGS84 system and merged with survey data using Cluster ID keys. Variables
were harmonized across countries (e.g., CH ARI, NO ARI CASES, LATNUM, LONGNUM), and records
with extensive missing or inconsistent values were removed, while limited gaps (<5%) were im-
puted.

5.2 Quality Control and Validation

Aggregate ARI incidence was cross-checked against DHS and WHO statistics [6], and random spot
checks ensured geospatial accuracy and minimized duplication.

5.3 Dataset Composition

The final dataset spans over 30 LMICs (primarily Sub-Saharan Africa and South & Southeast Asia),
with several thousand geocoded clusters. Each entry includes ARI incidence, geospatial coordinates,
administrative boundaries, and survey year. Approximately 10% of clusters reported zero ARI cases,
validated as either low-risk or reflecting small sample sizes.

Table 1: Correlation between ARI cases and environmental indicators. Top-2 correlations are high-
lighted.

Variable CO mean NO2 mean SO2 mean Mean Temp. (°C)
NO ARI CASES 0.005 0.031 0.170 0.001

Table 2: Performance of chimney detection methods. Top-2 accuracies are highlighted.
Method / Stage Accuracy (%)
Chimney Index (threshold = 0.4)
Patparganj Industrial Area, Delhi (India) 79.17
Sundar Industrial Estate, Lahore (Pakistan) 68.42
Tongi Industrial Estate, Dhaka (Bangladesh) 70.00
Sequential Transformer Chaining
Initial Vision Transformer Filtering 60.00
Secondary Remote CLIP Filtering 85.00
Tertiary Remote CLIP Refinement 95.00

Table 3: ARI cases prediction using multiple climatic and air-quality indicators.
Model Loss Function Validation MSE Notes
BERT (baseline) MSE 0.860 smaller architecture
TabTransformer (Our implementation) MSE 0.145 larger model (dim=256, depth=6, heads=32)

6 Results

We first examined the Pearson’s correlations (see Table 1) between Acute Respiratory Infection
(ARI) incidence and environmental indicators (CO, NO2, SO2, and mean temperature). Overall as-
sociations were weak, with SO2 showing the strongest positive correlation (r = 0.17), while CO
(r = 0.005), NO2 (r = 0.031), and mean temperature (r = 0.001) showed negligible relationships.
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Brick kilns and industrial chimneys in South Asia frequently burn coal, biomass, or low-grade fur-
nace oil, which release SO2 when sulfur is oxidized during combustion. As a major air pollutant,
SO2 irritates the respiratory tract, contributes to childhood ARI, and forms secondary pollutants
such as sulfate aerosols and acid rain. These findings suggest pollutant-specific effects, with sulfur
dioxide emerging as a more relevant driver of localized ARI burden.

Figure 2 presents the geospatial distribution of brick kiln emissions (∼55,387 chimneys), and Fig-
ure 3 shows ARI incidence across South Asia, highlighting overlapping spatial hotspots of industrial
activity and respiratory health burden. Quantitative evaluation in Tables 2, further demonstrates that
the Chimney Index achieved regional accuracies of 68–79%, refined to 95% through Sequential
Transformer Chaining [7].

For ARI prediction, we compared two transformer-based approaches. The TabTransformer [9]
achieved a substantially lower validation error (MSE = 0.145) than the baseline BERT model [10],
confirming its effectiveness for structured environmental data (see Table 3). The model took cli-
matic and environmental indicators as inputs and predicted ARI case counts through a regression
head built on top of embedding layers, multi-head self-attention, and feed-forward blocks.

(a) (b) (c) (d)

Figure 2: Geospatial visualization of emission sources across South Asia. (a) Brick Kiln Belt of
South Asia ( 55,387 chimneys), (b) Kiln locations in Pakistan, (c) Kiln locations in India, and (d)
Kiln locations in Bangladesh.

(a) (b) (c)

Figure 3: Geospatial visualization Acute Respiratory Infection (ARI) incidence across South Asia.
(a) Brick Kiln Belt of South Asia ( 55,387 chimneys) (b) Raw DHS-reported ARI cases at cluster
level. (c) Normalized ARI incidence per 100,000 population showing spatial hotspots over 30 low-
and middle-income nations, mainly in Sub-Saharan Africa and South & Southeast Asia

Our findings validate the hypothesis that industrial air pollution sources are significantly correlated
with respiratory health burdens in children. While the DHS spatial jitter limits absolute precision,
the correlation patterns hold across three countries of South Asia. Further research should include
time-series modeling and pollutant-level validation with Sentinel-5P.

7 Conclusion

This work demonstrates a scalable, data-driven framework for quantifying the health impacts of
industrial emissions by integrating remote sensing, foundation models, and geocoded health sur-
veys. By linking chimney detection with respiratory health outcomes, we provide new evidence
on pollutant-specific risks, particularly the role of sulfur dioxide in driving Acute Respiratory In-
fection (ARI) burden. The approach not only advances spatial epidemiology but also supports the
design of targeted regulatory and health interventions in high-risk urban areas. Looking forward,
the framework can be extended with time-series analysis and additional environmental indicators to
strengthen predictive modeling and inform climate and health policy.
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