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Abstract

Climate risk assessment requires modelling complex interactions between spatially heterogeneous hazards and adaptive economic systems. We present a 

novel geospatial agent-based model that integrates climate hazard data with evolutionary learning for economic agents. Our framework combines Mesa-

based spatial modelling with CLIMADA climate impact assessment, introducing adaptive learning behaviours that allow firms to evolve strategies for budget 

allocation, pricing, wages, and risk adaptation through fitness-based selection and mutation. We demonstrate the framework using riverine flood projections 

under RCP8.5 until 2100, showing that evolutionary adaptation enables firms to converge with baseline (no hazard) production levels after decades of 

disruption due to climate stress. Our results reveal systemic risks where even agents that are not directly exposed to floods face impacts through supply 

chain disruptions, with the end-of-century average price of goods 5.6% higher under RCP8.5 compared to the baseline in our illustrative economic network. 

This open-source framework provides financial institutions and companies with tools to quantify both direct and cascading climate risks while evaluating 

cost-effective adaptation strategies.

• Current climate-economy models often rely on static damage functions that fail 

to account for adaptive behaviours, spatial heterogeneity of hazards, and 

cascading effects through supply chain networks. 

• Agent-based modelling (ABM) offers a promising alternative by enabling 

bottom-up simulation of heterogeneous agents with adaptive behaviours. 

• This approach has been limited due to challenges such as integration of 

geospatial climate data with economic ABM models, realistic agent behaviours 

that respond to local hazard conditions, and adaptive learning mechanisms that 

allow agents to evolve strategies under changing climate conditions.

• We address these challenges by developing a spatial ABM framework that 
combines geospatial climate data integration with evolutionary learning 

mechanisms for economic agents.

Motivation and Goal

• We construct a network of economic agents on a spatial grid using the Mesa 

Python framework (mesa.readthedocs.io).

• Climate hazards are overlaid and sampled independently for each grid cell. 

Damages to assets are calculated using CLIMADA impact functions (climada-

python.readthedocs.io).

• Climate damage affects agents through 1. firm capital stock reduction, 2. 

temporary productivity losses, 3. inventory destruction

• A network of economic agents is created, composed of households that 

supply labor and consume goods, and firms that production goods using 

labour, capital, and material inputs from other firms.

Framework

• We implement an evolutionary learning mechanism that allows firms to adapt 

six strategy parameters through fitness-based selection and mutation:

1. Labor budget weight: Controls the fraction of available cash allocated to 

hiring workers. 

2. Input budget weight: Determines spending on intermediate goods from 
suppliers. 

3. Capital budget weight: Governs investment in productive capital. 

4. Risk sensitivity multiplier: Modulates the firm's response to nearby climate 

events. 

5. Price responsiveness factor: Controls how aggressively firms adjust prices 
based on inventory levels and market conditions.

6. Wage adjustment sensitivity: Determines the speed and magnitude of wage 

changes in response to labor market conditions.

• Performance Memory: Each firm maintains a 10-step rolling window tracking 

money, production, capital stock, and limiting factors (labor/capital/input 
constraints), with fitness evaluation based on the most recent 5 steps.

• Fitness Function: Combines four components with fixed weights: 1) Growth 

rate (40%): Money growth rate with diminishing returns via tanh; 2) 

Production stability (30%): One minus the coefficient of variation in production 

(rewards consistent production with lower variability); 3) Survival bonus 
(20%): Longevity reward that increases linearly up to 20 steps; 4) Resource 

balance (10%): Diversity of limiting factors across labor, capital, and inputs.

• Individual Adaptation: Each living firm independently evaluates and mutates 

its strategy parameters every 5 steps. Mutation strength adapts based on 

fitness changes: parameters have a 30% probability of mutation with 
Gaussian noise at standard deviation of 2.5% of current value (if fitness 

improved), 5% (baseline), or 10% (if fitness declined), implementing adaptive 

hill-climbing.

• Evolutionary Replacement: Up to a quarter of failed firms are replaced 

every 10 steps – defined as firms that have less money than the minimum 
survival amount or their wealth reduced by more than 50% over 5 time-steps. 

Offspring are created from fitness-weighted selection of successful firms, 

inheriting parent strategy with a 50% probability of mutation per parameter 

with Gaussian noise at 10% standard deviation.

Adaptive Learning

• A sample network of 15 firms and 75 households is implemented with WRI Aqueduct riverine flood data 

(https://www.wri.org/data/aqueduct-floods-hazard-maps) under RCP8.5 compared with a baseline no-hazard scenario

• Baseline scenario: The firms start with an average production of 4.3 units / firm, which falls into a stable 

regime of 0.4 units / firm (Figure 1a). Households transition from providing an average of 0.5 units of labour 

in 2020 to 0.1 by the of the century. This drop is due to the affordability of labour by firms, as the baseline 
production bottleneck in Figure 1h shows the majority of firms (60% to 90% over time) are labour-limited in 

their production. The economy exhibits emergent inflation, as firm production drops by 91% throughout the 

century while household wealth drops by 3%. The strong demand for goods from households and the low 

supply by firms leads to the strong inflation shown in Figure 1d. While wages also increase (Figure 1e), they 

don't experience in the same rise due to the downward pressure of affordability of labour and high 
unemployment (Figure 1f).

• RCP8.5 scenario: Under climate stress, firms lose inventory, productivity, and capital, resulting in 

diminished production. In 2050, the average per-firm production is 0.7, compared with 2.1 units in the 

baseline scenario. However, the evolutionary adaptation of firms results in comparable production between 

the scenarios by the end of the century. We find that without the evolutionary adaption, average firm 
production drops to just 0.1 by the end of the century. Inflation is significantly higher under RCP8.5 due to 

the cumulative impact of lower supply from firms. The average price of goods by the end of the century is 

5.6% higher compared to the baseline. The lower supply of firms is exacerbated by the higher wealth of 

households (Figure 1g). Households have higher wealth because of forced savings, where the limited 

availability of goods constrains the spending of households despite increasing wages due to demand for 
labour. Figure 1i shows that under RCP8.5, most firms are still labour-limited in their production function. 

Compared with the baseline, there are more capital-limited firms in the first two decades, due to the effect of 

acute hazards on capital. However, through evolutionary adaptation, firms alleviate capital issues by pre-

emptively increasing capital as regional risks increase, even before a firm is directly affected by an acute 

event.

Results

Figure 1. Agent trajectories under baseline (no hazard) and RCP8.5 riverine flooding scenarios.

The results highlight the importance of geospatial agent-based modelling in capturing systemic disruptions due to climate risk. Agents throughout the network are exposed to risks even if they are not 

directly affected by acute hazards. While hazards affect the capital, inventory, and productivity of firms, households face several system risks, including higher unemployment rates and higher inflation. 

Firms also experience indirect risks, as evident by the near doubling of the percentage of input-limited firms under RCP8.5 compared to baseline in 2050 (Figure 1h vs.1i). However, firms are able to 

lower these risks by adapting to evolving climate stresses through improved budget allocation, dynamic pricing, and capital accumulation, as evident by the convergence of firm production and wealth 

under RCP8.5 with those of the baseline by the end of the century under the adaptive learning regime.

This framework enables financial institutions to better assess portfolio climate risks and helps companies evaluate adaptation strategies for climate-induced supply chain risks, addressing the critical 

gap between climate projections and financial and operational decision-making. Our open-source implementation facilitates broader adoption for building climate-resilient economic systems.

Conclusions
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