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Numerical Weather and Climate Modelling
Basics
Operational Weather and Climate Models (such as the UK Met Office’s 
Unified Model) are comprised of 2 MAIN components:

1. DYNAMICS – Fluid motion (solving governing equations) that can be 
resolved on model’s grid.

2. PHYSICS* –
a. Effects of fluid motion smaller than can be resolved (turbulence, 

convection)
b. Non-fluid motion (radiation, cloud physics)
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Thermodynamic Equation w/ Filter

Convection parameterisation needs to
1. Represent the effects of sub-filter-scale convection 

on the filtered flow (first term on RHS).
2. Produce phase-change such as precipitation 

(second term).
3. Factor in radiative contribution (third term).

100km

100m

1-10km

Content adapted from James Kent (Met Office) and Bob Plant (Reading) at the NCAS Climate Modelling Summer School 7 – 19 Sept 2025 in Cambridge, UK

Governing Equations
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State-Dependent Parametrisations
Go ↔ Climate Modelling

Component Go Model Parametrisations

State Board configuration Climate fields (e.g., Temperature)

Policy Learnt strategy Neural network 
(learnt from experience)

Action Play move 
(e.g. Move a stone) Modify subgrid parameter / flux

Environment Go transition rules Climate model (GCM)

Reward Win (+1) or loss (0) 
or intermediate value Skill Score (e.g., RMSE, Bias)

David Silver

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche
G, et al. Mastering the game of Go with
deep neural networks and tree search. Nature. 2016 
Jan;529(7587):484-9. Publisher: Nature Publishing Group.
Available from: https://www.nature.com/articles/nature16961.

AlphaGo (2017). 
https://youtu.be/WXuK6gekU1Y?si=0_Dqe7IGuUz4-dCF
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Why Reinforcement Learning?
Case AGAINST offline-ML*

Most ML data is observed 
from the satellite era – 1980 onwards.

ERA5 has been extended to 1940. 
In total – 84 years of hourly global 
data.

2. Atmospheric dynamics 
is chaotic … creating a 
static dataset can be 
computationally VERY 
EXPENSIVE.

1. Global warming is causing temperature and climate to go OUT-
OF-DISTRIBUTION. No guarantees for trained distribution to hold 
for warming regimes. EXPENSIVE RE-TRAINING is required for 
new data.

3. End-to-End Models (e.g., 
GraphCast, Aurora) DO
NOT EXPLICITY RESOLVE 
conservation physics. No 
guarantees for conservation 
in LONG-TERM Rollouts 
and often causes 
BLURRING.  Need physics 
informed architectures.

* ASSUMING standard off-the-shelf architectures. 4. LACK OF adaptability AGAINST sparse-rewards (e.g., combining 1-hr ERA5 data 
with 6-hour satellite data).

Reinforcement Learning (RL) can:
1. AVOID the need for costly offline datasets through online learning.
2. ADAPT continuously as new data emerge.
3. LEVERAGE the underlying physics-based climate model to ensure 
conservation.
4. LEARN effectively even from sparse or delayed rewards.
5. OPTIMISE directly for long-term rollouts consistent with climate dynamics.

5. NOT OPTIMISED for long-term forecasting. Most architectures predict one-step-
ahead and produce multiple outputs through auto-regressive forecasts.
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Bonavita M. On some limitations of data-
driven weather forecasting models. arXiv; 
2023. ArXiv:2309.08473
[stat]. Available from: 
https://arxiv.org/abs/2309.08473.
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DIFFERENTIABLE ESMs 
ARE NOT NEEDED

so are GPUs :)
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Summary
RAIN (Nath et al., 2025) : Parametrisations using Single-agent RL

1. EVALUATED model-free RL across two idealised climate setups, 
adjusting parameters via policies informed by evolving states.

2. OBSERVED mostly off-policy methods (DDPG, TD3, TQC) to 
perform best across environments (except DPG in RCE).

3. HIGHLIGHT understanding dynamics is key under computational 
constraints of climate simulations.

4. DEVELOPED a reproducible experimental workflow as a 
foundation for RL-based hybrid parameterisations in complex 
climate models.

5. IDENTIFIED structural limitations of the reward formulation (e.g., 
mean squared error) can cause over-compensation errors.

[1] Nath P, Moss H, Shuckburgh E, Webb M. RAIN: Reinforcement algorithms for improving numerical weather and climate models. 
2025 EGU General Assembly (Oral); 2025. EGU25-5159 (ITS1.4/CL0.10). Available from: https://arxiv.org/abs/2408.16118.

[2] Nath P, Schemm S, Moss H, Haynes P, Shuckburgh E, Webb M. Making Tunable Parameters State-Dependent in Weather and 
Climate Models with Reinforcement Learning (Manuscript in preparation).
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Spatial Decomposition
Federated Learning

Vertical exchange 
between levels

Horizonal exchange 
between columns

RL agent
attached to a grid cell

Grid cell 
unit in a GCM

Weights
exchange

(can be local/global)

Discrete Climate Model Grid Schematic (Earth Magazine) |  Astronaut riding a horse (OpenAI DALL-E, MIT Tech Review)
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Component Budyko-Sellers Energy Balance Model (EBM)

State Temperature

Policy Neural network (learnt from experience)

Action Modify albedo             , diffusive transport      ,  OLR coefficients

Environment EBM model 

Reward

climateRL Environments
Budyko-Sellers Energy Balance Model (EBM)

ebm-v0: 5 parameter values same for all 96 latitudes
ebm-v1: 96 ! and " pairs 1 – for each latitude
ebm-v2: FedRL version, global input but regional rewards (ensemble)
ebm-v3: ebm-v3 + sliced regional inputs (GCM-like)

ebm-v0 ebm-v1

Parameter Low High Canonical

140 420 210

1.95 2.05 2

0.3 0.4 0.354

0.2 0.3 0.25

0.55 0.65 0.6
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Federated Reinforcement Learning (FedRL) Federated RL can provide free improvements in existing RL 
parameterisations through weight-sharing. 

FedRAIN — leveraging the GCM structure, can:
1. LATCH an RL agent onto each regional climate process 

via GCM spatial decomposition.
2. SHARE weights periodically across agents for 

COLLECTIVE learning.
3. Perform FASTER convergence and more LOCALISED

skill.

6-region
decomposition

2-region
decomposition

ebm-v2 Environment

ebm-v2

RL agent for 
EVERY sub-region
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Experiment Pipeline
Multi-agent RL

MULTI
AGENT FedRL

SINGLE
AGENT

TD3

DDPG

TQC

1. 
Plot episodic
returns (for
climateRL

environments) 

2.  
Inter-compare
area weighted

RMSE

2. climateRL
Environments1. Spatial Decomposition 3. Reinforcement

Learning

Hyper-
parameter

Tuning

 Baseline

4. Evaluation
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Code for Multi-agent RL
https://github.com/p3jitnath/climate-rl-fedrl

Hyperparameters are shared 
from ebm-v1

Top-3
from ebm-v1

Code for FedRAIN API
https://github.com/p3jitnath/climate-rl-fedrain-api
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Results
Multi-agent EBM Regional Skill

ebm-v2

ebm-v3

1. fed05 in a2 achieves faster (5k vs. 10k) and 
more stable convergence than the single-agent 
baseline.

2. fed05 consistently outperforms both the static 
baseline climlab and unfederated nofed setups, 
showing the strongest gains (vs. ebm-v1) in 
tropical regions (30°S–0° and 0°–30°N).

3. Polar regions show comparable or better skill 
than the single-agent ebm-v1, demonstrating 
improved handling of sharp gradients through 
local specialisation.

4. Federated coordination (with DDPG) improves 
stability and reduces error variance, particularly 
in ebm-v3, where localised learning enhances 
performance.

5. Fine-grained decompositions increase sensitivity 
to hyperparameters, with TD3 and TQC showing 
transient collapses under modified inputs or 
rewards.

DDPG

Mean over all 
latitudes in 
sub-region

DDPG
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Results
Multi-agent EBM Global Skill

1. Global aggregation of non-local policies reduces performance, increasing both 
areaWRMSE and inter-seed variance compared to local evaluations.

2. Regional specialisation benefits are lost when policies are merged globally, with fed10-
GLOBAL performing worst due to infrequent synchronisation.

3. In ebm-v2, modest tropical and mid-latitude gains persist (vs. ebm-v1), but in ebm-v3
global inference further degrades robustness below the climlab baseline.

4. fed05 slightly improves stability, highlighting the challenge of reconciling heterogeneous 
climate regimes under global coordination.
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Summary
FedRAIN-Lite (Nath et al., 2025) : Parametrisations using FedRL
1. DEMONSTRATED faster convergence and geographically 

adaptive, state-dependent parameterisations through federated 
learning and spatial decomposition.

2. DEVELOPED in line with the modular design in GCMs, 
allowing region-specific corrections under global coordination 
via FedRAIN-Lite.

3. ESTABLISHED DDPG as a robust and efficient baseline, 
achieving stable convergence and low zonal errors across all 
setups.

4. PROVIDE a scalable prototype from idealised EBMs to 
operational GCMs, supporting data-driven and physically 
consistent climate modelling.

[1] Nath P, Schemm S, Moss H, Haynes P, Shuckburgh E, Webb M. FedRAIN-Lite: Federated Reinforcement Algorithms for Improving Idealised Numerical Weather 
and Climate Models. arXiv; 2025 NeurIPS workshop on Tackling Climate Change with Machine Learning. Available from: https://arxiv.org/abs/2508.14315.

[2] Nath P, Schemm S, Moss H, Haynes P, Shuckburgh E, Webb M. Making Tunable Parameters State-Dependent in Weather and Climate Models with Reinforcement 
Learning (Manuscript in preparation).

ebm-v2 ebm-v3
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Next Steps …

MOVING TO THE

Unified Model
UM


