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1. Overview

2. Federated Reinforcement Learning

3. Results

4. Conclusion

1. Federated setups (ebm-v2, ebm-v3) converge significantly faster than the single-agent baseline (ebm-
v1), with stable training after 2.5k–5k steps compared to >10k in ebm-v1.

2. FedRL improves zonal skill, cutting area-weighted RMSE by over 50% in tropical and mid-latitude 
bands relative to static and non-federated baselines.

3. Frequent aggregation (fed05) yields the most consistent gains, while less frequent updates (fed10) 
show higher variance and less stable coordination.

4. DDPG consistently outperforms TD3 and TQC across all environments, with lower errors, faster 
convergence, and stronger generalisation across latitude bands

5. Robust performance across both coarse (a2) and fine (a6) decompositions demonstrates scalability of 
FedRAIN-Lite towards GCM-like architectures.

1. Multiple RL agents are assigned to latitude bands, allowing each to specialise in learning region-specific 
correction policies that adapt to local climate dynamics.

2. In ebm-v2, agents optimise local rewards while observing the full zonal temperature profile, whereas in ebm-
v3, agents receive only local temperature slices, creating a more decentralised and GCM-like setting.

3. Periodic global aggregation synchronises policy networks every K episodes (fed05 or fed10), balancing local 
adaptation with global stability and enabling coherent coordination across latitude bands.

4. Decentralised design mirrors the modular, spatially decomposed structure of operational GCMs, reducing 
optimisation complexity and supporting geographically adaptive skill.

5. Federated coordination (FedRL) enables agents to share knowledge across regions, helping faster training 
and generalisation, while preserving the flexibility to adapt to regional variability.

1. Combining RL with federated learning and spatial decomposition enables geographically adaptive, 
state-dependent parametrisations that evolve with model states.

2. FedRAIN-Lite aligns with the modular design of GCMs, allowing region-specific corrections while 
preserving global coordination.

3. DDPG emerges as a robust and efficient baseline, consistently achieving stable convergence and low 
zonal errors across all setups.

4. FedRAIN provides a scalable pathway from idealised EBMs to operational GCMs, supporting future 
data-driven and physically aligned climate modelling.
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ebm-v1 
single-agent, global input, global reward 

and latitude-specific parameters

ebm-v2 
multi-agent FedRL setup with 

shared global profile input and local rewards

ebm-v3 
multi-agent FedRL setup with sliced inputs and 
local rewards, mirroring GCM-like partitioning

Zonal skill (areaWRMSE) of DDPG in ebm-v2 Zonal skill (areaWRMSE) of DDPG in ebm-v3

1. Physics-based model limitations: Traditional climate models are computationally demanding and 
use simplified parametrisations for unresolved sub-grid processes, which introduce systematic biases 
that limit their fidelity under changing conditions.

2. Computational overheads: Current weather prediction systems rely on complex numerical methods 
and grid-based models that are expensive and inflexible. Offline parameter adjustment adds further 
cost and cannot adapt to evolving climate states.

3. Improving Climate Models with RL: 
a. Adaptive design: Unlike supervised ML, RL agents learn by direct interaction with the climate 

model, maximising cumulative rewards through feedback-driven decisions.
b. Dynamic alternative: RL adjusts parameters as a function of the model state, guided by 
 rewards (comparisons against observations or re-analysis), while adhering to physical constraints.
c. Sparse rewards: RL learns effectively from sparse or delayed signals, aligning with the 
 availability of observational data at discrete intervals.
d. Long-term optimisation: RL balances exploration and exploitation (during training) to refine 

parameterisations over time, enabling stable and scalable improvements to model fidelity.

4. FedRAIN-Lite: We extend single-agent RAIN (Nath et al., 2024) with a federated RL framework that 
learns region-specific corrections while preserving global coherence in idealised Budyko-Sellers 
EBMs.

ebm-v1 single-agent setup: 
Global agent sees the full 
temperature profile and 
learns latitude-dependent 
OLR parameters.

ebm-v3 multi-agent setup: Agents 
see local temperature slices, 
optimise region-specific rewards, 
and synchronise policies via FedRL 
aggregation every K episodes.

Experimental 
Outline: RL 
agents trained 
in single and 
federated 
settings across 
climateRL
environments, 
evaluated 
using episodic 
returns and 
area-weighted 
RMSE 
(areaWRMSE).


