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1. Overview

1. Physics-based model limitations: Traditional climate models are computationally demanding and
use simplified parametrisations for unresolved sub-grid processes, which introduce systematic biases
that limit their fidelity under changing conditions.

2. Computational overheads: Current weather prediction systems rely on complex numerical methods
and grid-based models that are expensive and inflexible. Offline parameter adjustment adds further
cost and cannot adapt to evolving climate states.

3. Improving Climate Models with RL.:

a. Adaptive design: Unlike supervised ML, RL agents learn by direct interaction with the climate
model, maximising cumulative rewards through feedback-driven decisions.

b. Dynamic alternative: RL adjusts parameters as a function of the model state, guided by
rewards (comparisons against observations or re-analysis), while adhering to physical constraints.

c. Sparse rewards: RL learns effectively from sparse or delayed signals, aligning with the
availability of observational data at discrete intervals.

d. Long-term optimisation: RL balances exploration and exploitation (during training) to refine
parameterisations over time, enabling stable and scalable improvements to model fidelity.

4. FedRAIN-Lite: We extend single-agent RAIN (Nath et al., 2024) with a federated RL framework that
learns region-specific corrections while preserving global coherence in idealised Budyko-Sellers
EBMs.

d b 0 A
-§ & 1. Spatial Decomposition I52n \2':2?]?::9;'{8 3. Rﬁz:r)r:?:;e"t 4. Evaluation
o
co 2 MULTI
o © AGENT FedRL
55 : | |
2 O E > fedo5
<72 O 4 | fed1@ | — > T3
I8 : [ worea | Experimental
=52 nofe xperimenta
Q0 .

o § © 6 Outline: RL
O © .
83 % 1, agents trained
W ® — — returns (for
L85 a2 climateRL federated
DO i i
220 1 environments)  settings across
% R §, comvz | jebmv3ii 4 5 |ppPG 5 climateRL
22a P > environments,
2_ 35S , 2 evaluated

E_ S C Inter-compare : : :
B E E 4 area weighted using episodic
=5< < BN RMSE returns and
oS 5 area-weighted
cEQX RMSE
T = ..
Z5543 2 P . (areaWRMSE).
— DX SINGLE
< ®© = AGENT : * : TQC

e —_— —' Hyper- | >
E = : parameter !
ebm-v1 ' Tuning

3¢ S

[=]ifaF: ]

1. Federated setups (ebm-v2, ebm-v3) converge significantly faster than the single-agent baseline (ebm-
v1), with stable training after 2.5k—5k steps compared to >10k in ebm-v1.

2. FedRL improves zonal skill, cutting area-weighted RMSE by over 50% in tropical and mid-latitude
bands relative to static and non-federated baselines.

3. Frequent aggregation (fedo5) yields the most consistent gains, while less frequent updates (fed10)
show higher variance and less stable coordination.

4. DDPG consistently outperforms TD3 and TQC across all environments, with lower errors, faster
convergence, and stronger generalisation across latitude bands

5. Robust performance across both coarse (a2) and fine (a6) decompositions demonstrates scalability of
FedRAIN-Lite towards GCM-like architectures.
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2. Federated Reinforcement Learning

1. Multiple RL agents are assigned to latitude bands, allowing each to specialise in learning region-specific
correction policies that adapt to local climate dynamics.

2. In ebm-v2, agents optimise local rewards while observing the full zonal temperature profile, whereas in ebm- (eg. DDPG)
v3, agents receive only local temperature slices, creating a more decentralised and GCM-like setting. '
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5. Federated coordination (FedRL) enables agents to share knowledge across regions, helping faster training

and generalisation, while preserving the flexibility to adapt to regional variability.

ebm-v1 single-agent setup: RL Agent ebm-v3 multi-agent setup: Agents
Global agent sees the full see local temperature slices,

: RL Algorithm
temperature profile anc gDDPG optimise region-specific rewards,
learns latitude-dependent (eg. )

RL Agent
RL Algorithm

Zonal $ Set OLR
1
1
1
1

Local Reward

to climlab Zonal
EBM Region

from climlab Zonal
EBM Region

and synchronise policies via FedRL v
OLR parameters. aggregation every K episodes. FedRL Aggregation
. i aggregate every K episodes
Observation Action @ ¢ ={dL, ... ,du}, dL=Vin, PH = Yar)m
> _
O¢ = At = g 1
: T
[{TS¢} ]¢_1 N [{Ad), Bcb} :lcb=1 ...N Policy Network Weights Policy Network Weights 2 g é%
Policy Network — £
= / P Cw gﬁ
{Ap) Byl = floca1(Tsgp) l l z T8
; 0® 32
Zonal Set OLR M P v SE i
Mean Parameters : O g
Temperature [{Ag, Bgl] climateRL climateRL climateRL .4 climateRL climateRL oo 23
Sub-Process 1 Sub-Process 2 - Sub-Process i Sub-Process n-1 Sub-Process n @)
Reward A ‘ A T ‘ A ‘ T ‘ ) N/
2
Ry = 24(Ts - Ts
t c|>( obs, ¢ CID) Reward Ry 1 =34(TSops ¢ Tsep)’ Rit 2 Reward R ; = Z4(Tsops ¢ Tsgp)” Rt n-1 Reward Ri; =24 (Tsops ¢ TSg)? i
| S
o
. ! ! 3 ! 3 5.
A i
climlab ( EBM Region EBM Region EBM Region EBM Region L
Zonal EBM ¢|—= Y1, cl)H = Ym ¢L= Ym | ¢H = Yom climlab ¢L= Y(n-2)m, ¢H = Y(n-1)m ¢L= Y(n-1)m, ch = Ynm l_
Zonal EBM ﬂ
¢ =1{d, ... ,dy} {

4. Conclusion

1. Combining RL with federated learning and spatial decomposition enables geographically adaptive,
state-dependent parametrisations that evolve with model states.

2. FedRAIN-Lite aligns with the modular design of GCMs, allowing region-specific corrections while
preserving global coordination.

3. DDPG emerges as a robust and efficient baseline, consistently achieving stable convergence and low
zonal errors across all setups.

4. FedRAIN provides a scalable pathway from idealised EBMs to operational GCMs, supporting future
data-driven and physically aligned climate modelling.
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