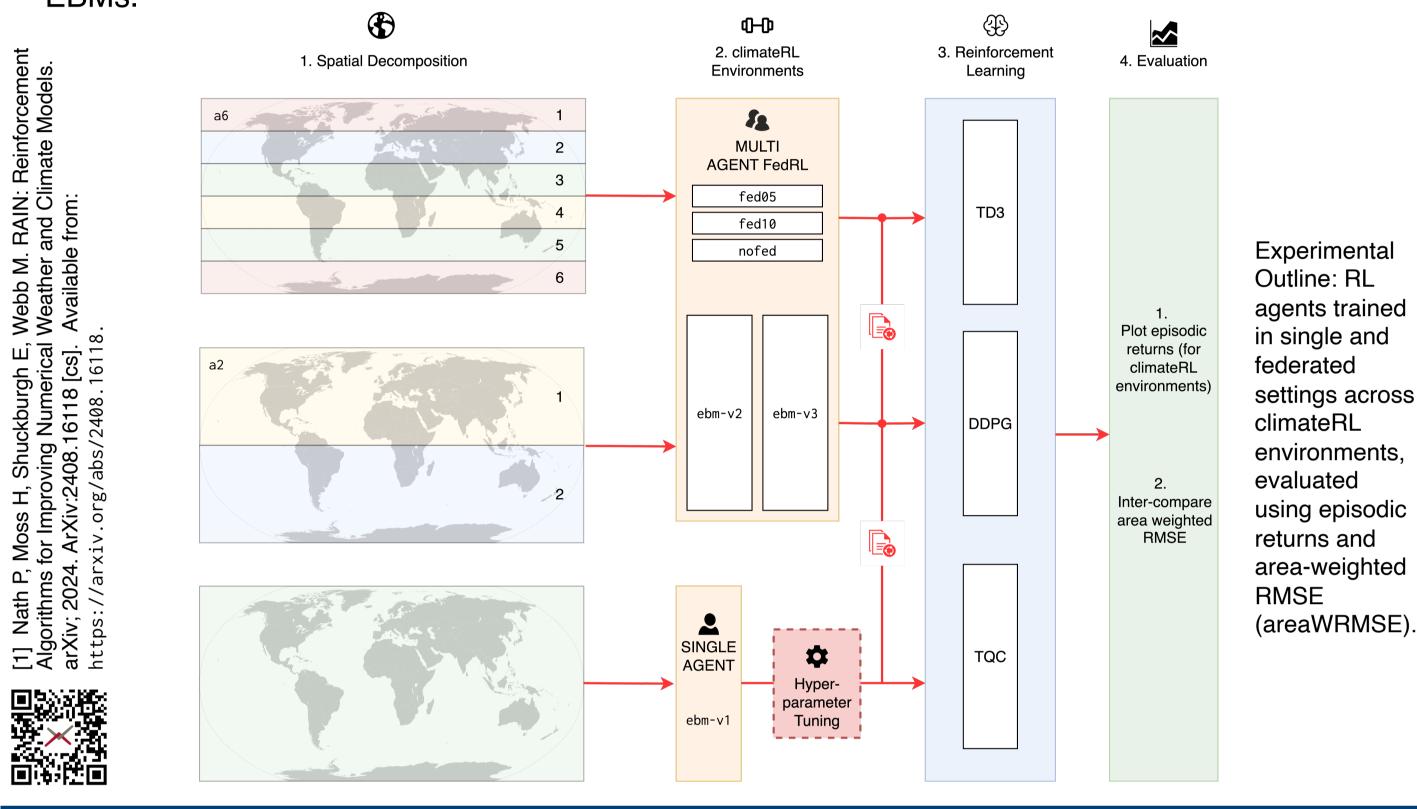
FedRAIN-Lite: Federated Reinforcement Algorithms for Improving Idealised Numerical Weather and Climate Models

Pritthijit Nath¹ Sebastian Schemm¹ Henry Moss^{1,2} Peter Haynes¹ Emily Shuckburgh³ Mark Webb⁴

1. Overview

- 1. Physics-based model limitations: Traditional climate models are computationally demanding and use simplified parametrisations for unresolved sub-grid processes, which introduce systematic biases that limit their fidelity under changing conditions.
- 2. Computational overheads: Current weather prediction systems rely on complex numerical methods and grid-based models that are expensive and inflexible. Offline parameter adjustment adds further cost and cannot adapt to evolving climate states.
- 3. Improving Climate Models with RL:
 - a. Adaptive design: Unlike supervised ML, RL agents learn by direct interaction with the climate model, maximising cumulative rewards through feedback-driven decisions.
 - b. Dynamic alternative: RL adjusts parameters as a function of the model state, guided by rewards (comparisons against observations or re-analysis), while adhering to physical constraints.
 - c. Sparse rewards: RL learns effectively from sparse or delayed signals, aligning with the availability of observational data at discrete intervals.
 - d. Long-term optimisation: RL balances exploration and exploitation (during training) to refine parameterisations over time, enabling stable and scalable improvements to model fidelity.
- 4. FedRAIN-Lite: We extend single-agent RAIN (Nath et al., 2024) with a federated RL framework that learns region-specific corrections while preserving global coherence in idealised Budyko-Sellers EBMs.



show higher variance and less stable coordination.

bands relative to static and non-federated baselines.

v1), with stable training after 2.5k–5k steps compared to >10k in ebm-v1.

convergence, and stronger generalisation across latitude bands

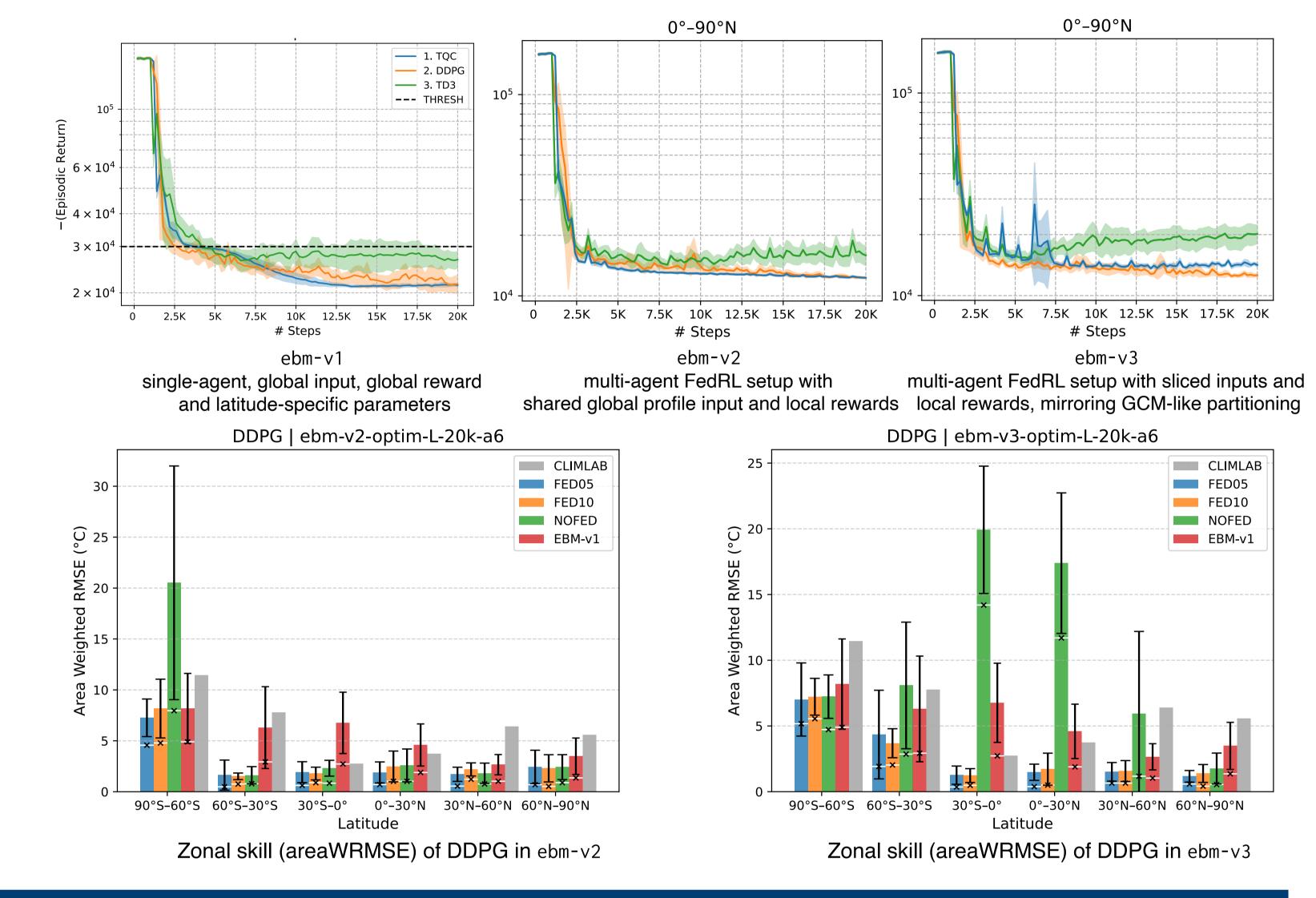
3. Frequent aggregation (fed05) yields the most consistent gains, while less frequent updates (fed10)

2. FedRL improves zonal skill, cutting area-weighted RMSE by over 50% in tropical and mid-latitude

3. Results

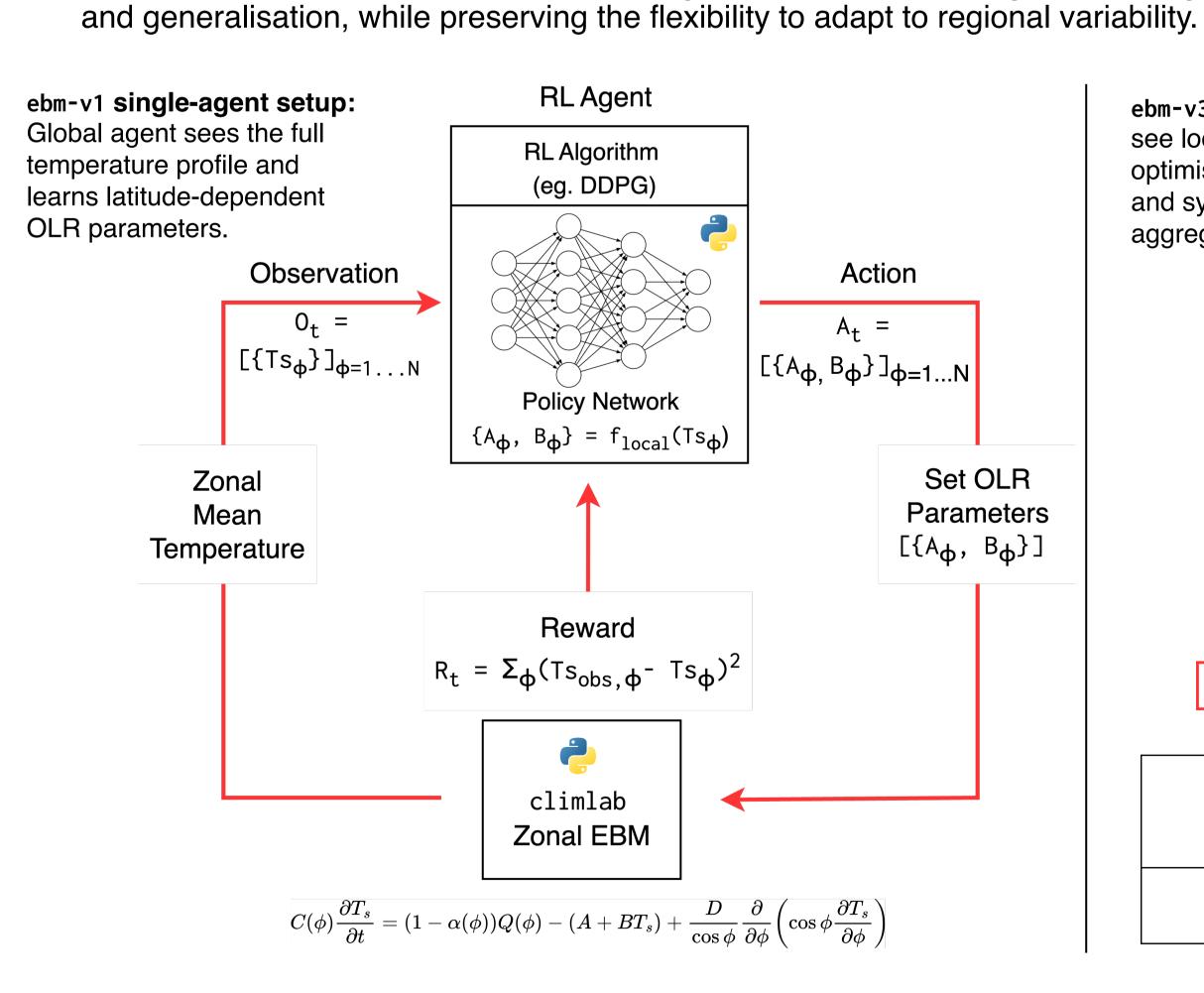
1. Federated setups (ebm-v2, ebm-v3) converge significantly faster than the single-agent baseline (ebm-

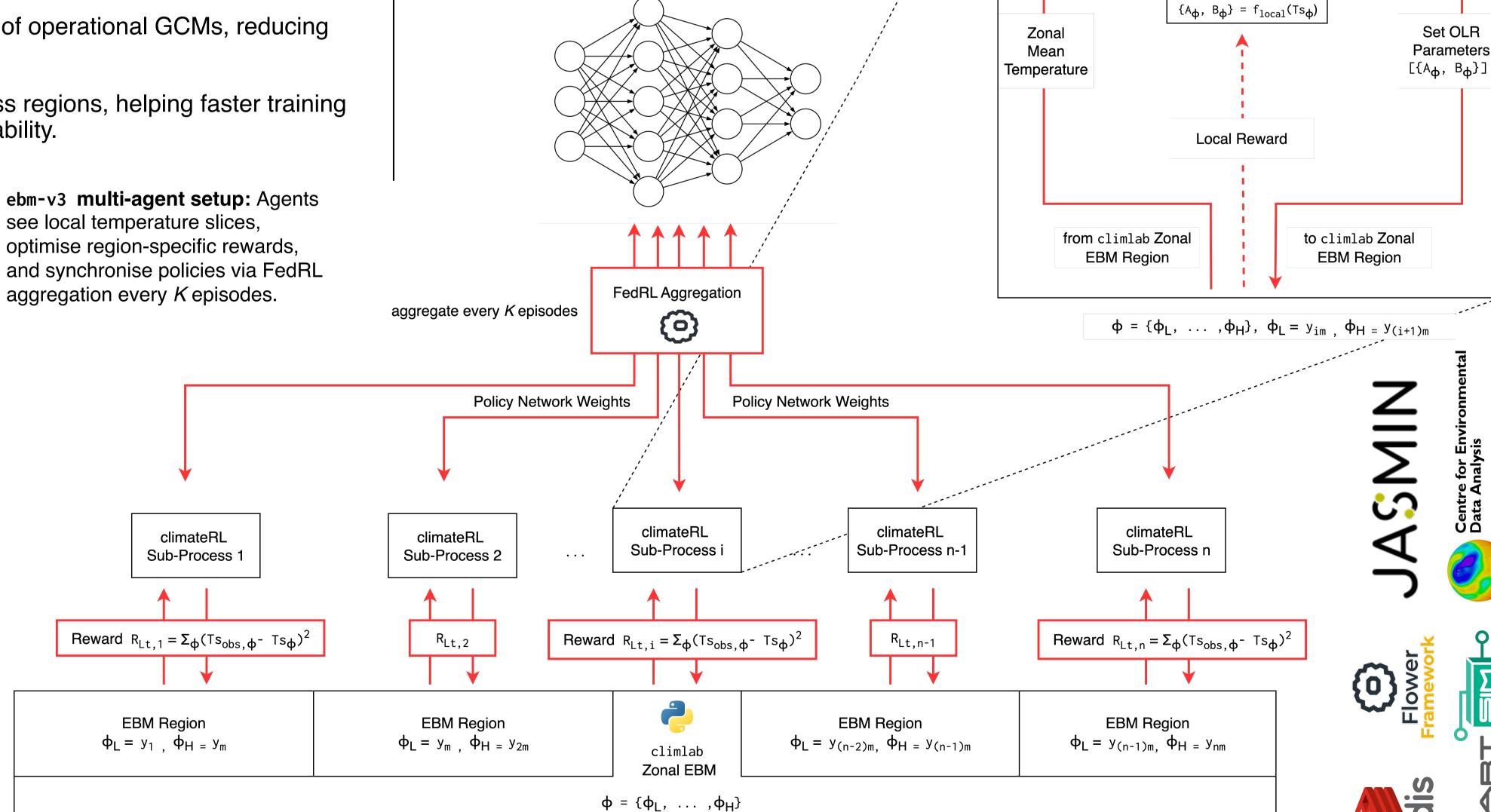
- 4. DDPG consistently outperforms TD3 and TQC across all environments, with lower errors, faster
- 5. Robust performance across both coarse (a2) and fine (a6) decompositions demonstrates scalability of FedRAIN-Lite towards GCM-like architectures.



2. Federated Reinforcement Learning

- 1. Multiple RL agents are assigned to latitude bands, allowing each to specialise in learning region-specific correction policies that adapt to local climate dynamics.
- 2. In ebm-v2, agents optimise local rewards while observing the full zonal temperature profile, whereas in ebmv3, agents receive only local temperature slices, creating a more decentralised and GCM-like setting.
- 3. Periodic global aggregation synchronises policy networks every K episodes (fed05 or fed10), balancing local adaptation with global stability and enabling coherent coordination across latitude bands.
- 4. Decentralised design mirrors the modular, spatially decomposed structure of operational GCMs, reducing optimisation complexity and supporting geographically adaptive skill.
- 5. Federated coordination (FedRL) enables agents to share knowledge across regions, helping faster training





GCM-like

FedRL Policy Network

4. Conclusion

- 1. Combining RL with federated learning and spatial decomposition enables geographically adaptive, state-dependent parametrisations that evolve with model states.
- 2. FedRAIN-Lite aligns with the modular design of GCMs, allowing region-specific corrections while preserving global coordination.
- 3. DDPG emerges as a robust and efficient baseline, consistently achieving stable convergence and low zonal errors across all setups.
- 4. FedRAIN provides a scalable pathway from idealised EBMs to operational GCMs, supporting future data-driven and physically aligned climate modelling.

RL Agent

RL Algorithn

Observation

[{Tsp}]=p,...p,

(eg. DDPG)

Policy Network

Action

 $A_{+} =$

 $[\{A_{\varphi}, B_{\varphi}\}]_{\varphi=\varphi_{\varphi}} \dots \varphi_{\varphi}$

- ¹ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
- ² School of Mathematical Sciences, Lancaster University, UK ³ Department of Computer Science and Technology, University of Cambridge, UK

⁴ Met Office Hadley Centre, UK P. Nath was supported by the UKRI Centre for Doctoral Training in Application of Artificial Intelligence to the study of

funded by DSIT.

Environmental Risks [EP/S022961/1]. Mark Webb was supported by the Met Office Hadley Centre Climate Programme