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Abstract

Sub-grid parameterisations in climate models are traditionally static and tuned
offline, limiting adaptability to evolving states. This work introduces FedRAIN-
Lite, a federated reinforcement learning (FedRL) framework that mirrors the
spatial decomposition used in general circulation models (GCMs) by assigning
agents to latitude bands, enabling local parameter learning with periodic global
aggregation. Using a hierarchy of simplified energy-balance climate models,
from a single-agent baseline (ebm-v1) to multi-agent ensemble (ebm-v2) and
GCM-like (ebm-v3) setups, we benchmark three RL algorithms under different
FedRL configurations. Results show that Deep Deterministic Policy Gradient
(DDPG) consistently outperforms both static and single-agent baselines, with
faster convergence and lower area-weighted RMSE in tropical and mid-latitude
zones across both ebm-v2 and ebm-v3 setups. DDPG’s ability to transfer across
hyperparameters and low computational cost make it well-suited for geographically
adaptive parameter learning. This capability offers a scalable pathway towards
high-complexity GCMs and provides a prototype for physically aligned, online-
learning climate models that can evolve with a changing climate. Code accessible
at https://github.com/p3jitnath/climate-rl-fedrl.

1 Introduction

Climate models are indispensable for understanding the Earth’s many interacting systems, from
atmospheric circulation to the hydrological cycle, and play a central role in forecasting weather and
projecting future climate impacts. However, their predictive skill is often limited by uncertainties
arising from static sub-grid parameterisations of unresolved processes, traditionally tuned offline
against observations using expensive, ad-hoc experiments [, [2]. This tuning bottleneck often inhibits
adaptability to state-dependent variability within the system. Emerging online learning methods, such
as Ensemble Kalman Inversion (EnKI) [3]], offer a principled and computationally efficient alternative
by casting it as a Bayesian inverse problem, successfully applied to convection schemes in idealised
general circulation models (GCMs) [4]]. Reinforcement learning (RL) [5]], one of the key drivers
behind recent advances in large language models (LLMs) [6]], has also shown promise in idealised
climate settings, enabling models to iteratively learn parameterisation components by interacting with
the climate system itself [7]]. These recent approaches represent a shift toward adaptive, data-informed
parameterisation strategies that can respond to distributional changes over time such as those rising
from natural variability or externally forced trends such as global warming.
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While Nath et al. [7] demonstrated RL’s potential in idealised models, their setups lacked spatial de-
composition and treated the system as a whole, limiting scalability and regional adaptivity. In contrast,
operational GCMs routinely use spatial decomposition for both physics and computations. Embracing
this paradigm, this work introduces a federated reinforcement learning (FedRL) framework [8]], which
we term FedRAIN-Lite, where “federated" refers to the use of multiple agents assigned to distinct
latitude bands that learn local policies independently, while synchronising periodically via global
aggregation to stabilise training and enable knowledge transfer across bands. This multi-agent setup
not only reduces optimisation complexity within each region but also mirrors real-world model
architectures, enabling both faster convergence and geographically adaptive skill.

As running full-scale GCMs can be computationally expensive and challenging to interpret, we explore
a hierarchy of idealised energy balance models (EBMs) [9H11], where the proposed FedRAIN-Lite
framework significantly improves training stability and skill, particularly in tropical and mid-latitude
zones, relative to a non-federated approach. Among three RL algorithms tested: Deep Deterministic
Policy Gradient (DDPG) [12], Twin-delayed DDPG (TD3) [13]], and Truncated Quantile Critics
(TQC) [14] (summaries in Appendix [A.I)), DDPG emerges as the most hyperparameter-robust and
computationally efficient candidate, achieving consistent performance gains in both single-agent
and federated multi-agent settings. Compared to static baselines and single-agent global RL models,
DDPG under federated coordination converges faster and generalises better across latitude bands.

The key contributions of this work are:

1. A novel application of FedRL to climate model parameterisation, using spatial decomposi-
tion schemes that mirror the structure of operational GCMs.

2. Systematic benchmarking of three RL algorithms (DDPG, TD3, TQC) across a hierarchy
of idealised EBMs, spanning single-agent and multi-agent configurations with increasing
physical complexity.

3. Demonstration of DDPG’s robustness, scalability, and skill, showing that it consistently
achieves strong performance across decompositions and coordination strategies, making it a
practical and an efficient baseline for geographically adaptive climate parameter learning.

2 Methodology

2.1 Background

In numerical weather and climate models, key unresolved processes such as radiation, convection,
and turbulence are represented through parameterisations, which are simplified functional forms with
fixed or empirically tuned coefficients. These parameters are typically calibrated offline through
expensive trial-and-error simulations or derived from theoretical considerations (often relying on
highly idealised assumptions), and thus lack adaptability and can degrade performance under evolving
or unseen climate states.

RL offers a compelling alternative by framing parameterisation as a sequential decision process,
where an agent learns a control policy that dynamically adjusts parameters based on the evolving
model state. Recent work demonstrates RL’s growing impact across science, from fusion plasma
stabilisation to environmental management and fluid control [15420]. Conventional ML approaches
for climate model calibration often lack this feedback-driven adaptability inherent to RL. Moreover,
existing RL frameworks typically treat the model as a single unit, neglecting spatial heterogeneity
and regional dynamics. This motivates a decentralised approach that better reflects the modular and
geographically decomposed design of real-world GCMs.

2.2 Budyko-Sellers Energy Balance Model

The Budyko—Sellers EBM [9-11] is a latitudinally resolved idealised climate model that simulates
the zonal-mean surface temperature 7T (¢) as a function of latitude ¢. It represents the balance
between absorbed solar radiation, outgoing longwave radiation, and meridional heat transport (using
a downgradient diffusion assumption), governed by the following equation:
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where C(¢) is the effective heat capacity, a(¢) the surface albedo, Q(¢) the insolation, A and B
the outgoing longwave radiation (OLR) coefficients, and D the meridional heat transport parameter,
typically treated as constants chosen to match observations. Mathematical details on equilibria and
instabilities are discussed in Appendix [A.2]

The model is discretised into 96 latitude bands, enabling numerical simulation of temperature
dynamics across the globe. The OLR parameters A and B, are the primary targets for optimisation in
this work. In the RL setting, these coefficients are treated as learnable policy outputs, with agents
optimising them to reduce the temperature error relative to a prescribed climatological target, allowing

for spatially adaptive correction policies.

2.3 climateRL Environments

For training RL agents, we construct three climateRL environments (schematics in Appendix[A.3),
based on the Budyko-Sellers EBM, increasing in spatial complexity and progressively aligning with

real GCM design, as explained below.

ebm-v1 extends the single-agent RL setup from Nath et al. [[7]], where a global agent observes the full
zonal-mean temperature profile T (¢) and learns to modulate radiative parameters A and B adaptively
per latitude to minimise the mean squared error against a target climatology (e.g.. reanalysis). This
serves as a single agent centralised baseline without spatial decomposition or regional specialisation.

ebm-v2 introduces spatial decomposition by assigning latitude bands (grouped into two or six regions)
to separate agents. Each agent receives the full temperature profile as input but optimises a region-
specific reward. FedRL ensures coordination via periodic global aggregation of local policy networks
enabling geographically adaptive learning while preserving global coherence.

ebm-v3 mirrors the GCM design by restricting each agent’s input to a local temperature slice. This
creates a decentralised, partially observed setting closer to real models, where local physics modules
operate on region-specific state variables. Like ebm-v2, FedRL is used here with local rewards for

global synchronisation.

All climateRL environments are built using climlab [21]] and Gymnasium [22], and trained using
off-policy algorithms under episodic evaluation. The FedRL setup is implemented via Flower [23]],
using synchronous aggregation every K episodes (e.g., fed05, £ed10) to balance trade-offs between
local adaptation and global synchronisation.

3 Results
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Figure 1: Episodic return curves (log-scaled) with 95% spreads over 10 seeds for three RL algorithms:
TQC (blue), DDPG (orange), and TD3 (green), across three climateRL environments. Left: ebm-v1
(single-agent, global input, global reward and latitude-specific parameters). Middle: ebm-v2 (multi-
agent FedRL setup with shared global profile input and local rewards). Right: ebm-v3 (multi-agent
FedRL setup with sliced inputs and local rewards, mirroring GCM-like spatial decomposition).
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Figure 2: Comparison of zonal skill achieved by DDPG under FedRL coordination in ebm-v2 and
ebm-v3, both using the 6-agent spatial decomposition (a6). Skill is evaluated using arceaWRMSE
between predicted and reference temperature profiles, averaged with 95% spreads over 10 seeds.
Each subplot reports results for three FedRL schemes: fed05, fed10, nofed, along with single-
agent ebm-v1 and the static climlab baseline. White horizontal bars with a cross indicate the
best-performing seed for each scheme. Both setups adopt the same policy network architecture and
hyperparameters as ebm-v1. Detailed skill metrics for all experiments presented in Appendix @

Convergence is significantly faster in the FedRL schemes: ebm-v2 and ebm-v3 (as can be seen in
Figure[T) compared to the single-agent ebm-v1 setup. Training curves indicate that most policies
stabilise by 2.5k—5k steps in ebm-v2/3, while ebm-v1 shows delayed convergence beyond 10k steps.
This accelerated training can be attributed to the localised policy learning and reward structures,
which reduce the complexity of the optimisation landscape in the decentralised setups.

In Figure 2] across nearly all latitude bands, fed05 outperforms both the static baseline and non-
federated (nofed) counterparts, achieving significant skill improvements particularly in the tropics
(e.g., over 50% reduction in area-weighted RMSE (areaWRMSE) in 30°S-0° and 0°-30°N for both
ebm-v2 and ebm-v3). The gains are more pronounced in ebm-v3, where region-specific inputs likely
aid specialisation. In contrast, fed10, while still outperforming nofed, yields higher variance and
inconsistent benefits, indicating that frequent aggregation (fed05) is essential for stable coordination.
In polar regions, all federated schemes perform comparably to or better than ebm-v1, showcasing that
local specialisation assists in challenging loss landscapes with sharp gradients. Even under coarser
decomposition (a2 in Appendix [B.T)), DDPG under ebm-v2/3 maintains monotonic convergence and
achieves low final errors, reinforcing its robustness across spatial setups.

Results here highlight the benefits of regional specialisation via FedRL and confirm DDPG’s hyper-
parameter robustness to changes in reward structure and input resolution (alongside computational
efficiency), reinforcing its suitability for GCM-style architectures. Additional results for TD3 and
TQC are provided in Appendix [B.2] While occasionally competitive, both exhibit higher variance
and instability, especially under frequent aggregation or in equatorial and polar regions.

4 Conclusion

This work demonstrates that combining RL with federated learning and spatial decomposition offers
a scalable and effective strategy for adaptive climate model parameterisation. By aligning with
the spatial decomposition used in GCMs, FedRAIN-Lite allows regional agents to learn locally
specialised corrections while preserving global coordination. Among the methods evaluated, DDPG
consistently achieves stable convergence, low zonal errors, and strong generalisation across both
single- and multi-agent setups. By producing region-specific parameter adjustments, the framework
also supports interpretability through physical analysis of learnt policies, offering strong potential for
future work. Overall, these results position lightweight RL as a practical bridge from idealised EBMs
to operational GCMs, paving the way for more responsive, data-driven parameterisations in future
climate change assessments.
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A.2 EBM Equilibria and Instabilities

Multiple Equilibria and Climate Tipping. The Budyko-Sellers EBM can admit multiple steady-
state solutions due to the non-linear dependence of albedo on temperature. To understand this, we
consider a spatially averaged version of the model, where the diffusion term is neglected (D = 0)
and all quantities are averaged over latitudes. The energy balance equation in Eq. [I]reduces to an
ordinary differential equation:

0% = (- a(T)Q - (4 + BT) @

ar

At steady state, -

= 0, we solve:
(1-a(T))Q =A+ BT (3)

If «(T) is a smooth or piecewise function with a sharp transition around the freezing point T, this
equation may admit more than one root. In particular:

* A warm stable equilibrium: low albedo (e.g., open ocean), high T’

* A cold stable equilibrium: high albedo (e.g., ice-covered), low T'
* An intermediate unstable solution separating the two

This structure forms an S-shaped bifurcation diagram, where gradual changes in solar forcing ) or
feedback strength can lead to sudden jumps between climate states, a phenomenon known as climate
tipping. The multiplicity of solutions results from the positive ice-albedo feedback that amplifies
temperature perturbations.

Linear Stability of Warm and Cold Equilibria. To assess the stability of a given steady-state
temperature profile 7*(¢), we linearise the full equation about T*. Let T'(¢, t) = T*(¢) + 6T (¢, t),
where §7 is a small perturbation. Substituting into Eq.[I|and retaining only linear terms gives:

06T D 0 06T
—— = —B0T — S p—— 4
Clo)= T 5080 <005¢ 96 ) @)
or, in transformed coordinates x = sin ¢:
00T d 9 6T

This is a linear partial differential equation in 7' (x, t), which can be interpreted as an eigenvalue
problem:

B, D _ (o dT
)\5Tff@5T+ %ﬁ[éT] where L[0T] := . ((1 x“) da:) (6)

To solve this, we expand 67'(z, t) in terms of the eigenfunctions of the Sturm-Liouville operator L.
These eigenfunctions are the Legendre polynomials P, (x), which satisfy:

L[P,] = —n(n+ 1)P,(z) (7
Substituting into the eigenvalue equation, we obtain:
B D

where n =0, 1,2, ... and we assume C(x) = C is constant for simplicity.

Each eigenvalue )\, is strictly negative since both terms are negative, implying that all modes decay
exponentially with time. The higher the value of n, the faster the decay, corresponding to the damping
of fine-scale spatial features. Hence, the equilibrium is linearly stable. If C(x) varies with latitude,
this eigenvalue spectrum will be modified accordingly, but the sign of the real part remains governed
by the relative magnitudes of B, D, and the spatial variation in C(x).



The spectrum of eigenvalues {),, } provides insight into the stability of the different equilibria:

¢ Warm Equilibrium. At the warm stable branch, the surface temperature Ts(x) remains well
above the ice threshold T, over most latitudes, resulting in a uniformly low albedo a(¢) =
Quater- The radiative damping coefficient B and diffusivity D dominate the dynamics,
ensuring that all eigenvalues \,, remain strictly negative. This guarantees that all perturbation
modes decay exponentially, and the equilibrium is linearly stable.

* Cold Equilibrium. In the cold branch, nearly the entire domain is ice-covered, and
a(p) = e is large. The outgoing radiation A + BT is lower due to lower temperatures,
but the structure of the eigenvalue spectrum remains similar. Although the temperature
sensitivity of albedo becomes small (flat high-albedo state), the overall damping remains
strong, and the eigenvalues )\,, are still negative. Thus, this branch is also linearly stable.

Instability in the Intermediate Branch. Although the linearised eigenvalue spectrum for constant-
coefficient EBM in Eq. yields strictly negative eigenvalues, this result assumes that the albedo «(x)
is independent of temperature. In the intermediate equilibrium, however, the steady-state temperature

T'(x) lies near the ice—water transition threshold T, and hence small perturbations in temperature
cause large changes in albedo.

To account for temperature-dependent albedo in the linear stability analysis, we modify the perturbed
form of the EBM:

00T d o d6T da
Here, the albedo perturbation introduces an additional source term through the chain rule:
da
da(x) o7 0T () (10)

Substituting into the linearised energy balance yields a modified restoring term:

da da
—BéT(z) — Q(z) - T 0T (z) = — (B +Q(x) - dT) 0T (x) (11)
This implies an effective damping coefficient:
da
Bes(z) = B+ Q(z) - T (12)
As a result, the eigenvalue equation becomes:
Besi(z) D d o dOT
AT = — oT — (1 =2%)— 13
C(x) +C’($) dx (1=a%) dx (13)

When g—% is large and negative, typical near the albedo transition temperature 7, the effective damping

term Beg () can become negative in parts of the domain. If this occurs over a sufficiently wide region
in x € [—1, 1], the dominant eigenvalue Ay may cross zero and become positive, indicating the onset
of linear instability.

This mechanism explains how the intermediate equilibrium, where the climate state is sensitive to
ice—albedo feedback near the freezing threshold, is destabilised. In contrast, both the warm and cold
equilibria satisfy j—% ~ 0, leading to Begr(z) ~ B > 0 and a strictly negative eigenvalue spectrum,

ensuring stability.



A.3 climateRL EBM Schematics

RL Agent

RL Algorithm
(eg. DDPG)

Observation
0; =
H{Tsp}g=1.. N

Action

Ay =
[{A¢, Bp}Ip=1..N

Policy Network
{Atb' Bd)} = f~local(-r5(1>)

Zonal Set OLR
Mean Parameters
Temperature [{Ag, Bpl]
Reward

Re = Z¢(Tsops, 6™ T5¢)?

A
climlab
Zonal EBM
oT, D d T,
Clo) G =1 ale)Q@) - (4+ BT + 2D (coss 52 )

(a) ebm-v1 single-agent setup. The global agent observes the full zonal-mean temperature profile and outputs
latitude-dependent radiative parameters { Ay, By }. Loss from observations are computed over all 96 latitudes.

RL Agent
RL Algorithm
(eg. DDPG)
a
Observation Action
ENSEMBLE 0 = A =
FedRL Policy Network t =
4 [{Ts¢} et .. N $ [{A, By} et .. N
Policy Network
(A By = Frocar(Tsg)
Zonal Set OLR
Mean Parameters
Temperature [{Ap, By}l
Reward
Re = Zg(Tsops, ¢ T5)?
b= b, o bHd, b= Vin, PH = Ve
A
: D
climlab
Zonal EBM
O3 = - @) - 4+ BT + 2o 2 (o)
FedRL Aggregation
: aggregate every K episodes
Policy Network Weights Policy Network Weights
climateRL climateRL climateRL climateRL climateRL
Process 1 Process 2 o Process i Pt Process n-1 Process n

(b) ebm-v2 multi-agent ensemble with FedRL agents operate on latitude groups with local rewards while
receiving the global profile as input. Periodic aggregation every K episodes synchronises policy weights across
n agents.

Figure A.1: Schematics for climateRL EBM environments
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A.4 RL Algorithm Hyperparameters

Table A.2: Tabular representation of different RL hyperparameters

Algorithm Parameter Names Count

DDPG learning_rate, tau, batch_size, exploration_noise, 7
policy_frequency, noise_clip, actor_critic_layer_size

TD3 learning_rate, tau, batch_size, policy_noise, 8
exploration_noise, policy_frequency, noise_clip,
actor_critic_layer_size

TQC tau, batch_size, n_quantiles, n_critics, actor_adam_lr, 10

critic_adam_lr, alpha_adam_lr, policy_frequency,
target_network_frequency, actor_critic_layer_size

A.5 Experimental Outline

3] o
: 2. climateRL
1. Spatial Decomposition Environments
a6 1 i
2 MULTI
AGENT FedRL
3
4 —>
—
s
6
=
®
a2
1
ebm-v2 ebm-v3 >
2
&
()]
SIF\ELE b )
] 1
AGENT ¢ Lo 1
e — Hyper ——>

| parameter |
' Tuning |
! )

climlab Baseline

®

3. Reinforcement

Learning

DDPG

TQc

Figure A.2: Pipeline for the ebm-v1/2/3 experiments. The process begins with configuring the
Budyko—Sellers EBM in either single-agent (ebm-v1) or spatially decomposed multi-agent forms
(ebm-v2, ebm-v3) using two (a2) or six (a6) regions. Agents are trained with one of three RL
algorithms (DDPG, TD3, TQC) under coordination schemes fed05, fed10, or nofed. In multi-
agent settings, policies are periodically aggregated via FedRL every K episodes. Hyperparameters
tuned for ebm-v1 are transferred over to ebm-v2/v3. Finally trained models are assessed on their
training curves and benchmarked against a static climlab baseline, using a skill measure such as

areaWRMSE across 30° latitude groups.
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A.6 EBM State Evolution

Step 1 Step 40
40
~ 201
O
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1 —— EBM Model w/ RL
—40 EBM Model
—— Observations
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40
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Figure A.3: Evolution of the zonal-mean surface temperature in the ebm-v1 climateRL environment
over 200 integration steps. Each panel shows the latitudinal temperature profile at a selected timestep
(t = 1,40, 80,120, 160, 200), comparing the DDPG-assisted EBM (blue) with the standard c1imlab
EBM (orange) and reanalysis observations (black). The RL agent dynamically adjusts the OLR
parameters A and B per latitude, improving temperature representation while maintaining physical
consistency.
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B.2 TD3 and TQC Performance Across FedRL EBM Configurations

For TD3 (in Figures El (a) and (b)), performance in ebm-v2 shows competitive skill in tropical and
mid-latitude zones under £ed05, often matching or exceeding ebm-v1. However, variance increases
substantially in the polar bands, particularly in the Southern Hemisphere, where sharp gradients
appear harder to capture. In ebm-v3, TD3 displays more pronounced instability. While fed05
remains the most stable regime, episodic collapses in high-latitude bands lead to elevated RMSE
compared to ebm-v2. This suggests that the reduced and region-specific input state in ebm-v3, may
cause mismatch between hyperparameters tuned for global state inputs (in ebm-v1) and the regional
profile inputs used in ebm-v3, leading to instability in critic ensemble updates.
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Figure B.4: Comparison of zonal skill (areaWRMSE) for TD3 and TQC across ebm-v2 and ebm-v3
in 6-agent federated setups averaged with 95% spreads over 10 seeds. White horizontal bars with
a cross indicate the best-performing seed for each algorithm. Both setups adopt the same policy
architecture and hyperparameters as ebm-v1. Skill metrics are presented in Appendix@

TQC (in Figures[B:4](c) and (d)) performs strongly in ebm-v2 tropical bands under fed05, with clear
gains over ebm-v1. However, the method shows instability in high-latitude zones and wider error
bars under fed10, indicating a reliance on more frequent synchronisation for stability. In ebm-v3,
TQC’s performance degrades notably in the mid-latitudes, with polar areaWRMSE exceeding that
of ebm-v1 in several cases. The large critic ensemble, which benefits global contexts, may be less
effective when regional input profiles and rewards dominate, leading to overfitting or noisy updates.
These patterns reaffirm that while both TD3 and TQC can yield strong results under favourable
settings, DDPG’s simpler architecture appears more robust to the structural changes between ebm-v2
and ebm-v3.
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Appendix C Algorithm Pseudocode

C.1 Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 Deep Deterministic Policy Gradient (DDPG)

16:
17:

18:

19:

20:
21:

: Input: Gym environment, Total timesteps 7', Replay buffer size N, Discount factor =, Target

smoothing coefficient 7, Batch size B, Learning rate ), Exploration noise o

Initialise: Policy network parameters 6, Q-function network parameters ¢, target network
parameters Oraro, Grarg, €mpty replay buffer D

Pre-Setup: Configure seed and environment variables, prepare environment and logging

fort =1to 7T do
Observe state s and select action a = my(s)
Add exploration noise a « a + €, where € ~ N(0, o) if required
Execute action a and observe next state s’, reward r, and termination signal d
Store transition (s, a,r,s’,d) in D
if ¢ > learning_starts then
Sample a minibatch of B transitions (s, a,r, s, d) from D
Compute target for Q-function update:

y(r,s'sd) =1+ (1 = d)Qgy, (s, 70, (s"))
Update Q-function by minimising the loss:

b p— nwﬁ S (@Qulsa)—y(n s, )’

(s,a,r,s’,d)EB

Update policy by one step of gradient ascent:

. aﬂ,w% S Quls,mals)

seB
Soft-update target networks:

etarg — 76+ (1 - T)etarga (btarg — T¢ + (1 - T)¢targ

end if
end for
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C.2 Twin Delayed DDPG (TD3)

Algorithm 2 Twin Delayed DDPG (TD3)

1: Input: Gym environment, Total timesteps 7', Learning rate 1, Replay buffer size /V, Discount fac-
tor -, Target smoothing coefficient 7, Batch size B, Policy noise o, Noise clip oj;p, Exploration
NOISE Texplorations Policy update frequency fr

2: Initialise: Actor network 6, Critic networks ¢1, ¢, Target networks 6;4rg, Prarg, 15 Prarg,2
Empty replay buffer D

: Pre-Setup: Configure seed and environment variables, prepare environment and logging

Observe state s and select action a = 7y (s)
Add exploration noise a < a + €, where € ~ N(0, Texploration) if required

3
4:
5: fort =1to 7 do
6.
7
8 Execute action a and observe next state s’, reward r, and done signal d

9: Store transition (s, a,r,s’,d) in D
10: if t > learning_starts then
11: Sample a minibatch of B transitions (s, a,r, s, d) from D
12: Compute target actions:
13:
a' 7y, (s") +clip(N(0,0x), —0clip; Octip)
14: Compute target Q-values:
15:
y(r,s',d) < r+7(1 = d) min Q,,,, (5", @)
=1,
16: Update critic networks by minimising the loss:
17:

1 .
Pi < ¢i — Uvqm@ > (Qels,a) —y(r, s, )’ fori =1,2
(s,a,r,s’ . d)EB

18: if £ mod f; = 0 then
19: Update actor network by policy gradient:
20:
1
0«0+ TIVGE Z Q¢1 (Sa 79(8))

sEB
21: Soft update target networks:
22:

etarg — 7—9 + (1 - T)etarg7 (btarg,i — T(bi + (1 - T)¢targ,i fOI‘Z' = 17 2

23: end if
24: end if
25: end for
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C.3 Truncated Quantile Critics (TQC)

Algorithm 3 Truncated Quantile Critics (TQC)

1: Input: Gym environment, Total timesteps 7', Replay buffer size NV, Discount factor v, Smoothing
coefficient 7, Batch size B, Learning rate n, Number of quantiles N;, Number of critics N,

Drop quantiles Ng.op, Entropy coefficient o, Target entropy coefficient cvyrg

2: Initialise: Actor network 6, Critic network parameters ¢, ..., ¢n,, Target critic network

parameters Puarg 1, - - - » Drarg, N..» Replay buffer D

: Pre-Setup: Configure seed and environment variables, prepare environment and logging

Select action a ~ 7y(s) based on current policy and exploration strategy
Execute action a and observe next state s’, reward r, and done signal d
Store transition tuple (s, a,r, s’,d) in D

3
4:
5: fort =1to 7T do
6
7
8:
9: if ¢ > learning_starts then

10: for: =1to N.do
11: Sample a minibatch of B transitions (s, a,r, s, d) from D
12: Compute target quantile values for critic ¢¢arget s
13:
y(r,s',d)=r+~(1—d) (Q(z)larg,i (8',d’, Nrop) — axlog W@(d/|8/))

14: where @’ ~ my(s’)
15: Update critic ¢; by minimising the quantile Huber loss:

1

LY = N, Z HuberLoss(Q¢i (Sja Qjs k) — yj)
9 k=1

16: where 7, are the quantile fractions
17: end for
18: Update policy by one step of gradient ascent:
19:

N,
1 1§
06+ UVGE Z (—alog mo(als) + A ZQ@ (8,#9(8)))
seB N

i=1
20: Soft-update target networks:
21:
Grarg,i < TPi + (1 — T)Prarg,s fori =1,2, ..., N
22: Optionally adjust « based on entropy targets:
23:
o}
a+a+nVe— Z (log mo(als) + ovarg)
|B| seB
24: end if
25: end for
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