FedRAIN-Lite: Federated Reinforcement Algorithms for Improving Idealised Numerical Weather and Climate Models

Department of Applied Mathematics and Theoretical Physics, University of Cambridge School of Mathematical Sciences, Lancaster University

{pn341,ss3299,hm493,phh1,efs20}@cam.ac.uk;mark.webb@metoffice.gov.uk

Abstract

Sub-grid parameterisations in climate models are traditionally static and tuned offline, limiting adaptability to evolving states. This work introduces FedRAIN-Lite, a federated reinforcement learning (FedRL) framework that mirrors the spatial decomposition used in general circulation models (GCMs) by assigning agents to latitude bands, enabling local parameter learning with periodic global aggregation. Using a hierarchy of simplified energy-balance climate models, from a single-agent baseline (ebm-v1) to multi-agent ensemble (ebm-v2) and GCM-like (ebm-v3) setups, we benchmark three RL algorithms under different FedRL configurations. Results show that Deep Deterministic Policy Gradient (DDPG) consistently outperforms both static and single-agent baselines, with faster convergence and lower area-weighted RMSE in tropical and mid-latitude zones across both ebm-v2 and ebm-v3 setups. DDPG's ability to transfer across hyperparameters and low computational cost make it well-suited for geographically adaptive parameter learning. This capability offers a scalable pathway towards high-complexity GCMs and provides a prototype for physically aligned, onlinelearning climate models that can evolve with a changing climate. Code accessible at https://github.com/p3jitnath/climate-rl-fedrl.

1 Introduction

Climate models are indispensable for understanding the Earth's many interacting systems, from atmospheric circulation to the hydrological cycle, and play a central role in forecasting weather and projecting future climate impacts. However, their predictive skill is often limited by uncertainties arising from static sub-grid parameterisations of unresolved processes, traditionally tuned offline against observations using expensive, ad-hoc experiments [1, 2]. This tuning bottleneck often inhibits adaptability to state-dependent variability within the system. Emerging online learning methods, such as Ensemble Kalman Inversion (EnKI) [3], offer a principled and computationally efficient alternative by casting it as a Bayesian inverse problem, successfully applied to convection schemes in idealised general circulation models (GCMs) [4]. Reinforcement learning (RL) [5], one of the key drivers behind recent advances in large language models (LLMs) [6], has also shown promise in idealised climate settings, enabling models to iteratively learn parameterisation components by interacting with the climate system itself [7]. These recent approaches represent a shift toward adaptive, data-informed parameterisation strategies that can respond to distributional changes over time such as those rising from natural variability or externally forced trends such as global warming.

³ Department of Computer Science and Technology, University of Cambridge ⁴ Met Office Hadley Centre

While Nath et al. [7] demonstrated RL's potential in idealised models, their setups lacked spatial decomposition and treated the system as a whole, limiting scalability and regional adaptivity. In contrast, operational GCMs routinely use spatial decomposition for both physics and computations. Embracing this paradigm, this work introduces a federated reinforcement learning (FedRL) framework [8], which we term **FedRAIN-Lite**, where "federated" refers to the use of multiple agents assigned to distinct latitude bands that learn local policies independently, while synchronising periodically via global aggregation to stabilise training and enable knowledge transfer across bands. This multi-agent setup not only reduces optimisation complexity within each region but also mirrors real-world model architectures, enabling both faster convergence and geographically adaptive skill.

As running full-scale GCMs can be computationally expensive and challenging to interpret, we explore a hierarchy of idealised energy balance models (EBMs) [9–11], where the proposed **FedRAIN-Lite** framework significantly improves training stability and skill, particularly in tropical and mid-latitude zones, relative to a non-federated approach. Among three RL algorithms tested: Deep Deterministic Policy Gradient (DDPG) [12], Twin-delayed DDPG (TD3) [13], and Truncated Quantile Critics (TQC) [14] (summaries in Appendix A.1), DDPG emerges as the most hyperparameter-robust and computationally efficient candidate, achieving consistent performance gains in both single-agent and federated multi-agent settings. Compared to static baselines and single-agent global RL models, DDPG under federated coordination converges faster and generalises better across latitude bands.

The key contributions of this work are:

- 1. A novel application of FedRL to climate model parameterisation, using spatial decomposition schemes that mirror the structure of operational GCMs.
- 2. **Systematic benchmarking** of three RL algorithms (DDPG, TD3, TQC) across a hierarchy of idealised EBMs, spanning single-agent and multi-agent configurations with increasing physical complexity.
- 3. **Demonstration of DDPG's robustness, scalability, and skill**, showing that it consistently achieves strong performance across decompositions and coordination strategies, making it a practical and an efficient baseline for geographically adaptive climate parameter learning.

2 Methodology

2.1 Background

In numerical weather and climate models, key unresolved processes such as radiation, convection, and turbulence are represented through parameterisations, which are simplified functional forms with fixed or empirically tuned coefficients. These parameters are typically calibrated offline through expensive trial-and-error simulations or derived from theoretical considerations (often relying on highly idealised assumptions), and thus lack adaptability and can degrade performance under evolving or unseen climate states.

RL offers a compelling alternative by framing parameterisation as a sequential decision process, where an agent learns a control policy that dynamically adjusts parameters based on the evolving model state. Recent work demonstrates RL's growing impact across science, from fusion plasma stabilisation to environmental management and fluid control [15–20]. Conventional ML approaches for climate model calibration often lack this feedback-driven adaptability inherent to RL. Moreover, existing RL frameworks typically treat the model as a single unit, neglecting spatial heterogeneity and regional dynamics. This motivates a decentralised approach that better reflects the modular and geographically decomposed design of real-world GCMs.

2.2 Budyko-Sellers Energy Balance Model

The Budyko–Sellers EBM [9–11] is a latitudinally resolved idealised climate model that simulates the zonal-mean surface temperature $T_s(\phi)$ as a function of latitude ϕ . It represents the balance between absorbed solar radiation, outgoing longwave radiation, and meridional heat transport (using a downgradient diffusion assumption), governed by the following equation:

$$C(\phi)\frac{\partial T_s}{\partial t} = \underbrace{(1 - \alpha(\phi))Q(\phi)}_{\text{absorbed shortwave}} - \underbrace{(A + BT_s)}_{\text{longwave cooling}} + \underbrace{\frac{D}{\cos\phi}\frac{\partial}{\partial\phi}\left(\cos\phi\frac{\partial T_s}{\partial\phi}\right)}_{\text{diffusive transport}}$$
(1)

where $C(\phi)$ is the effective heat capacity, $\alpha(\phi)$ the surface albedo, $Q(\phi)$ the insolation, A and B the outgoing longwave radiation (OLR) coefficients, and D the meridional heat transport parameter, typically treated as constants chosen to match observations. Mathematical details on equilibria and instabilities are discussed in Appendix A.2.

The model is discretised into 96 latitude bands, enabling numerical simulation of temperature dynamics across the globe. The OLR parameters A and B, are the primary targets for optimisation in this work. In the RL setting, these coefficients are treated as learnable policy outputs, with agents optimising them to reduce the temperature error relative to a prescribed climatological target, allowing for spatially adaptive correction policies.

2.3 climateRL Environments

For training RL agents, we construct three climateRL environments (schematics in Appendix A.3), based on the Budyko–Sellers EBM, increasing in spatial complexity and progressively aligning with real GCM design, as explained below.

ebm-v1 extends the single-agent RL setup from Nath et al. [7], where a global agent observes the full zonal-mean temperature profile $T_s(\phi)$ and learns to modulate radiative parameters A and B adaptively per latitude to minimise the mean squared error against a target climatology (e.g., reanalysis). This serves as a single agent centralised baseline without spatial decomposition or regional specialisation.

ebm-v2 introduces spatial decomposition by assigning latitude bands (grouped into two or six regions) to separate agents. Each agent receives the full temperature profile as input but optimises a region-specific reward. FedRL ensures coordination via periodic global aggregation of local policy networks enabling geographically adaptive learning while preserving global coherence.

ebm-v3 mirrors the GCM design by restricting each agent's input to a local temperature slice. This creates a decentralised, partially observed setting closer to real models, where local physics modules operate on region-specific state variables. Like ebm-v2, FedRL is used here with local rewards for global synchronisation.

All climateRL environments are built using climlab [21] and Gymnasium [22], and trained using off-policy algorithms under episodic evaluation. The FedRL setup is implemented via Flower [23], using synchronous aggregation every K episodes (e.g., fed05, fed10) to balance trade-offs between local adaptation and global synchronisation.

3 Results

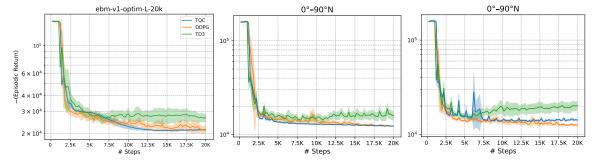
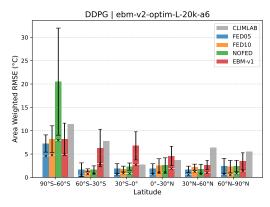
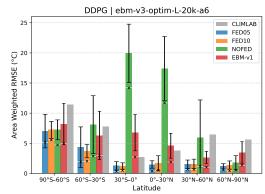


Figure 1: Episodic return curves (log-scaled) with 95% spreads over 10 seeds for three RL algorithms: TQC (blue), DDPG (orange), and TD3 (green), across three climateRL environments. Left: ebm-v1 (single-agent, global input, global reward and latitude-specific parameters). Middle: ebm-v2 (multi-agent FedRL setup with shared global profile input and local rewards). Right: ebm-v3 (multi-agent FedRL setup with sliced inputs and local rewards, mirroring GCM-like spatial decomposition).





- (a) Zonal skill (areaWRMSE) of DDPG in ebm-v2
- (b) Zonal skill (areaWRMSE) of DDPG in ebm-v3

Figure 2: Comparison of zonal skill achieved by DDPG under FedRL coordination in ebm-v2 and ebm-v3, both using the 6-agent spatial decomposition (a6). Skill is evaluated using areaWRMSE between predicted and reference temperature profiles, averaged with 95% spreads over 10 seeds. Each subplot reports results for three FedRL schemes: fed05, fed10, nofed, along with single-agent ebm-v1 and the static climlab baseline. White horizontal bars with a cross indicate the best-performing seed for each scheme. Both setups adopt the same policy network architecture and hyperparameters as ebm-v1. Detailed skill metrics for all experiments presented in Appendix B.1.

Convergence is significantly faster in the FedRL schemes: ebm-v2 and ebm-v3 (as can be seen in Figure 1) compared to the single-agent ebm-v1 setup. Training curves indicate that most policies stabilise by 2.5k-5k steps in ebm-v2/3, while ebm-v1 shows delayed convergence beyond 10k steps. This accelerated training can be attributed to the localised policy learning and reward structures, which reduce the complexity of the optimisation landscape in the decentralised setups.

In Figure 2, across nearly all latitude bands, fed05 outperforms both the static baseline and non-federated (nofed) counterparts, achieving significant skill improvements particularly in the tropics (e.g., over 50% reduction in area-weighted RMSE (areaWRMSE) in 30°S–0° and 0°–30°N for both ebm-v2 and ebm-v3). The gains are more pronounced in ebm-v3, where region-specific inputs likely aid specialisation. In contrast, fed10, while still outperforming nofed, yields higher variance and inconsistent benefits, indicating that frequent aggregation (fed05) is essential for stable coordination. In polar regions, all federated schemes perform comparably to or better than ebm-v1, showcasing that local specialisation assists in challenging loss landscapes with sharp gradients. Even under coarser decomposition (a2 in Appendix B.1), DDPG under ebm-v2/3 maintains monotonic convergence and achieves low final errors, reinforcing its robustness across spatial setups.

Results here highlight the benefits of regional specialisation via FedRL and confirm DDPG's hyper-parameter robustness to changes in reward structure and input resolution (alongside computational efficiency), reinforcing its suitability for GCM-style architectures. Additional results for TD3 and TQC are provided in Appendix B.2. While occasionally competitive, both exhibit higher variance and instability, especially under frequent aggregation or in equatorial and polar regions.

4 Conclusion

This work demonstrates that combining RL with federated learning and spatial decomposition offers a scalable and effective strategy for adaptive climate model parameterisation. By aligning with the spatial decomposition used in GCMs, FedRAIN-Lite allows regional agents to learn locally specialised corrections while preserving global coordination. Among the methods evaluated, DDPG consistently achieves stable convergence, low zonal errors, and strong generalisation across both single- and multi-agent setups. By producing region-specific parameter adjustments, the framework also supports interpretability through physical analysis of learnt policies, offering strong potential for future work. Overall, these results position lightweight RL as a practical bridge from idealised EBMs to operational GCMs, paving the way for more responsive, data-driven parameterisations in future climate change assessments.

Acknowledgements and Disclosure of Funding

P. Nath was supported by the UKRI Centre for Doctoral Training in Application of Artificial Intelligence to the study of Environmental Risks [EP/S022961/1]. Mark Webb was supported by the Met Office Hadley Centre Climate Programme funded by DSIT.

References

- [1] Hourdin F, Mauritsen T, Gettelman A, Golaz JC, Balaji V, Duan Q, et al. The Art and Science of Climate Model Tuning. 2017 Mar. Section: Bulletin of the American Meteorological Society. Available from: https://journals.ametsoc.org/view/journals/bams/98/3/bams-d-15-00135.1.xml.
- [2] Rasp S, Pritchard MS, Gentine P. Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences. 2018 Sep;115(39):9684-9. Publisher: Proceedings of the National Academy of Sciences. Available from: https://www.pnas.org/doi/10.1073/pnas.1810286115.
- [3] Iglesias MA, Law KJH, Stuart AM. The Ensemble Kalman Filter for Inverse Problems. Inverse Problems. 2013 Apr;29(4):045001. ArXiv:1209.2736 [math]. Available from: http://arxiv.org/abs/1209.2736.
- [4] Dunbar ORA, Garbuno-Inigo A, Schneider T, Stuart AM. Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM. Journal of Advances in Modeling Earth Systems. 2021;13(9):e2020MS002454. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1029/2020MS002454.
- [5] Sutton RS, Barto AG. Reinforcement learning: An introduction. vol. 1. MIT Press Cambridge; 1998. Available from: http://incompleteideas.net/book/RLbook2020.pdf.
- [6] DeepSeek-AI, Guo D, Yang D, Zhang H, Song J, Zhang R, et al.. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv; 2025. ArXiv:2501.12948 [cs]. Available from: http://arxiv.org/abs/2501.12948.
- [7] Nath P, Moss H, Shuckburgh E, Webb M. RAIN: Reinforcement Algorithms for Improving Numerical Weather and Climate Models. arXiv; 2024. ArXiv:2408.16118 [cs]. Available from: http://arxiv.org/abs/2408.16118.
- [8] Jin H, Peng Y, Yang W, Wang S, Zhang Z. Federated Reinforcement Learning with Environment Heterogeneity. In: Proceedings of The 25th International Conference on Artificial Intelligence and Statistics. PMLR; 2022. p. 18-37. ISSN: 2640-3498. Available from: https://proceedings.mlr.press/v151/jin22a.html.
- [9] Budyko MI. The effect of solar radiation variations on the climate of the Earth. Tellus. 1969;21(5):611-9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1969.tb00466.x.
- [10] Sellers WD. A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. 1969 Jun. Section: Journal of Applied Meteorology and Climatology. Available from: https://journals.ametsoc.org/view/journals/apme/8/3/1520-0450_1969_008_0392_agcmbo_2_0_co_2.xml.
- [11] North GR. Theory of Energy-Balance Climate Models. 1975 Nov. Section: Journal of the Atmospheric Sciences. Available from: https://journals.ametsoc.org/view/journals/atsc/32/11/1520-0469_1975_032_2033_toebcm_2_0_co_2.xml.
- [12] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, et al.. Continuous control with deep reinforcement learning. arXiv; 2019. ArXiv:1509.02971 [cs]. Available from: http://arxiv.org/abs/1509.02971.
- [13] Fujimoto S, Hoof Hv, Meger D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv; 2018. ArXiv:1802.09477 [cs]. Available from: http://arxiv.org/abs/ 1802.09477.

- [14] Kuznetsov A, Shvechikov P, Grishin A, Vetrov D. Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics. In: Proceedings of the 37th International Conference on Machine Learning. PMLR; 2020. p. 5556-66. ISSN: 2640-3498. Available from: https://proceedings.mlr.press/v119/kuznetsov20a.html.
- [15] Degrave J, Felici F, Buchli J, Neunert M, Tracey B, Carpanese F, et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature. 2022 Feb;602(7897):414-9. Publisher: Nature Publishing Group. Available from: https://www.nature.com/articles/ s41586-021-04301-9.
- [16] Mole A, Weissenbacher M, Rigas G, Laizet S. Reinforcement Learning Increases Wind Farm Power Production by Enabling Closed-Loop Collaborative Control. arXiv; 2025. ArXiv:2506.20554 [physics]. Available from: http://arxiv.org/abs/2506.20554.
- [17] Seo J, Kim S, Jalalvand A, Conlin R, Rothstein A, Abbate J, et al. Avoiding fusion plasma tearing instability with deep reinforcement learning. Nature. 2024 Feb;626(8000):746-51. Publisher: Nature Publishing Group. Available from: https://www.nature.com/articles/s41586-024-07024-9.
- [18] Yu J, Schreck JS, Gagne DJ, Oleson KW, Li J, Liang Y, et al.. Reinforcement Learning (RL) Meets Urban Climate Modeling: Investigating the Efficacy and Impacts of RL-Based HVAC Control. arXiv; 2025. ArXiv:2505.07045 [cs]. Available from: http://arxiv.org/abs/2505.07045.
- [19] Chapman M, Xu L, Lapeyrolerie M, Boettiger C. Bridging adaptive management and reinforcement learning for more robust decisions. Philosophical Transactions of the Royal Society B: Biological Sciences. 2023 May;378(1881):20220195. Publisher: Royal Society. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2022.0195.
- [20] Cai W, Wang G, Zhang Y, Qu X, Huang Z. Reinforcement Learning for Active Matter. arXiv; 2025. ArXiv:2503.23308 [cond-mat]. Available from: http://arxiv.org/abs/2503.23308.
- [21] Rose BE. CLIMLAB: a Python toolkit for interactive, process-oriented climate modeling. J Open Source Softw. 2018;3(24):659. Available from: https://www.theoj.org/joss-papers/joss.00659/10.21105.joss.00659.pdf.
- [22] Towers M, Kwiatkowski A, Terry J, Balis JU, Cola GD, Deleu T, et al.. Gymnasium: A Standard Interface for Reinforcement Learning Environments. arXiv; 2024. ArXiv:2407.17032 [cs]. Available from: http://arxiv.org/abs/2407.17032.
- [23] Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y, et al.. Flower: A Friendly Federated Learning Research Framework. arXiv; 2022. ArXiv:2007.14390 [cs]. Available from: http://arxiv.org/abs/2007.14390.
- [24] Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M. Deterministic Policy Gradient Algorithms. In: Proceedings of the 31st International Conference on Machine Learning. PMLR; 2014. p. 387-95. ISSN: 1938-7228. Available from: https://proceedings.mlr.press/v32/silver14.html.
- [25] Haarnoja T, Zhou A, Abbeel P, Levine S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv; 2018. ArXiv:1801.01290 [cs]. Available from: http://arxiv.org/abs/1801.01290.

Appendix A Additional Background

A.1 RL Algorithm Summaries

Table A.1: Four point summaries of the DDPG, TD3 and TQC

Algorithm	Pronerties
Deep Deterministic Policy Gradient (DDPG) [12]	1. Off-policy actor-critic algorithm that extends DPG [24] using deep function approximators and additional stabilisation mechanisms. 2. Introduces experience replay and target networks with soft target updates to decorrelate samples and improve training stability. 3. Actor and critic networks are both updated similar to DPG. 4. Overestimation bias and sensitivity to exploration noise often limit performance unless mitigated by design changes (e.g. TD3).
Twin Delayed DDPG (TD3) [13]	 Off-policy actor-critic method designed to reduce the overestimation bias observed in DDPG. Uses a double critic architecture where the minimum of two Q-value estimates is used for critic updates. Actor is updated less frequently than the critics, and target networks are softly updated to reduce update variance. Injects temporally correlated Gaussian noise into the target actions to promote exploration in continuous action spaces.
Truncated Quantile Critics (TQC) [14]	1. Off-policy actor-critic algorithm that builds on SAC [25] with a distributional critic using quantile regression. 2. Models the full distribution of returns $Z(s,a)$ as quantiles $\{\tau_i\}$, capturing uncertainty and reducing bias. 3. Discards the top k quantiles before computing target values to avoid overestimation from outlier returns. 4. Provides a smooth and robust training signal for distributional value estimation by minimising the quantile Huber loss: $\mathcal{L}_{\tau} = \frac{1}{N} \sum_{i=1}^{N} \rho_{\kappa}(\tau_i - y)$ where τ_i is the predicted i -th quantile, y is the target return, ρ_{κ} denotes the Huber loss with threshold k and N is the number of quantile estimates used in training

A.2 EBM Equilibria and Instabilities

Multiple Equilibria and Climate Tipping. The Budyko-Sellers EBM can admit multiple steady-state solutions due to the non-linear dependence of albedo on temperature. To understand this, we consider a spatially averaged version of the model, where the diffusion term is neglected (D=0) and all quantities are averaged over latitudes. The energy balance equation in Eq. 1 reduces to an ordinary differential equation:

$$C\frac{dT}{dt} = (1 - \alpha(T))Q - (A + BT) \tag{2}$$

At steady state, $\frac{dT}{dt} = 0$, we solve:

$$(1 - \alpha(T))Q = A + BT \tag{3}$$

If $\alpha(T)$ is a smooth or piecewise function with a sharp transition around the freezing point T_c , this equation may admit more than one root. In particular:

- A warm stable equilibrium: low albedo (e.g., open ocean), high T
- A cold stable equilibrium: high albedo (e.g., ice-covered), low T
- An intermediate unstable solution separating the two

This structure forms an S-shaped bifurcation diagram, where gradual changes in solar forcing Q or feedback strength can lead to sudden jumps between climate states, a phenomenon known as climate tipping. The multiplicity of solutions results from the positive ice-albedo feedback that amplifies temperature perturbations.

Linear Stability of Warm and Cold Equilibria. To assess the stability of a given steady-state temperature profile $T^{\star}(\phi)$, we linearise the full equation about T^{\star} . Let $T(\phi,t) = T^{\star}(\phi) + \delta T(\phi,t)$, where δT is a small perturbation. Substituting into Eq. 1 and retaining only linear terms gives:

$$C(\phi)\frac{\partial \delta T}{\partial t} = -B\delta T + \frac{D}{\cos\phi}\frac{\partial}{\partial\phi}\left(\cos\phi\frac{\partial\delta T}{\partial\phi}\right) \tag{4}$$

or, in transformed coordinates $x = \sin \phi$:

$$C(x)\frac{\partial \delta T}{\partial t} = -B\delta T + D\frac{d}{dx}\left((1-x^2)\frac{d\delta T}{dx}\right) \tag{5}$$

This is a linear partial differential equation in $\delta T(x,t)$, which can be interpreted as an eigenvalue problem:

$$\lambda \delta T = -\frac{B}{C(x)} \delta T + \frac{D}{C(x)} \mathcal{L}[\delta T] \quad \text{where} \quad \mathcal{L}[\delta T] := \frac{d}{dx} \left((1 - x^2) \frac{d\delta T}{dx} \right) \tag{6}$$

To solve this, we expand $\delta T(x,t)$ in terms of the eigenfunctions of the Sturm-Liouville operator \mathcal{L} . These eigenfunctions are the Legendre polynomials $P_n(x)$, which satisfy:

$$\mathcal{L}[P_n] = -n(n+1)P_n(x) \tag{7}$$

Substituting into the eigenvalue equation, we obtain:

$$\lambda_n = -\frac{B}{C} - \frac{D}{C}n(n+1) \tag{8}$$

where n = 0, 1, 2, ... and we assume C(x) = C is constant for simplicity.

Each eigenvalue λ_n is strictly negative since both terms are negative, implying that all modes decay exponentially with time. The higher the value of n, the faster the decay, corresponding to the damping of fine-scale spatial features. Hence, the equilibrium is linearly stable. If C(x) varies with latitude, this eigenvalue spectrum will be modified accordingly, but the sign of the real part remains governed by the relative magnitudes of B, D, and the spatial variation in C(x).

The spectrum of eigenvalues $\{\lambda_n\}$ provides insight into the stability of the different equilibria:

- Warm Equilibrium. At the warm stable branch, the surface temperature $\overline{T_s}(x)$ remains well above the ice threshold T_c over most latitudes, resulting in a uniformly low albedo $\alpha(\phi) \approx \alpha_{\text{water}}$. The radiative damping coefficient B and diffusivity D dominate the dynamics, ensuring that all eigenvalues λ_n remain strictly negative. This guarantees that all perturbation modes decay exponentially, and the equilibrium is linearly stable.
- Cold Equilibrium. In the cold branch, nearly the entire domain is ice-covered, and $\alpha(\phi) \approx \alpha_{\rm ice}$ is large. The outgoing radiation $A + B\overline{T_s}$ is lower due to lower temperatures, but the structure of the eigenvalue spectrum remains similar. Although the temperature sensitivity of albedo becomes small (flat high-albedo state), the overall damping remains strong, and the eigenvalues λ_n are still negative. Thus, this branch is also linearly stable.

Instability in the Intermediate Branch. Although the linearised eigenvalue spectrum for constant-coefficient EBM in Eq. 8 yields strictly negative eigenvalues, this result assumes that the albedo $\alpha(x)$ is independent of temperature. In the intermediate equilibrium, however, the steady-state temperature $\overline{T}(x)$ lies near the ice—water transition threshold T_c , and hence small perturbations in temperature cause large changes in albedo.

To account for temperature-dependent albedo in the linear stability analysis, we modify the perturbed form of the EBM:

$$C(x)\frac{\partial \delta T}{\partial t} = -B\delta T + D\frac{d}{dx}\left((1-x^2)\frac{d\delta T}{dx}\right) - Q(x)\cdot\frac{d\alpha}{dT}\cdot\delta T\tag{9}$$

Here, the albedo perturbation introduces an additional source term through the chain rule:

$$\delta\alpha(x) = \frac{d\alpha}{dT} \cdot \delta T(x) \tag{10}$$

Substituting into the linearised energy balance yields a modified restoring term:

$$-B\delta T(x) - Q(x) \cdot \frac{d\alpha}{dT} \cdot \delta T(x) = -\left(B + Q(x) \cdot \frac{d\alpha}{dT}\right) \delta T(x) \tag{11}$$

This implies an **effective damping** coefficient:

$$B_{\text{eff}}(x) = B + Q(x) \cdot \frac{d\alpha}{dT}$$
(12)

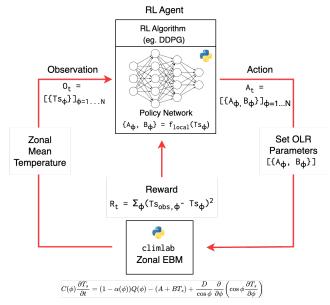
As a result, the eigenvalue equation becomes:

$$\lambda \delta T = -\frac{B_{\text{eff}}(x)}{C(x)} \delta T + \frac{D}{C(x)} \cdot \frac{d}{dx} \left((1 - x^2) \frac{d\delta T}{dx} \right)$$
 (13)

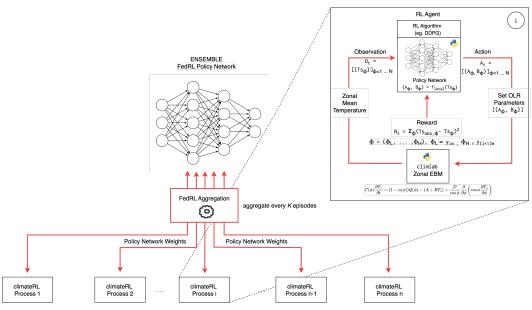
When $\frac{d\alpha}{dT}$ is large and negative, typical near the albedo transition temperature T_c , the effective damping term $B_{\rm eff}(x)$ can become negative in parts of the domain. If this occurs over a sufficiently wide region in $x \in [-1,1]$, the dominant eigenvalue λ_0 may cross zero and become positive, indicating the onset of linear instability.

This mechanism explains how the intermediate equilibrium, where the climate state is sensitive to ice–albedo feedback near the freezing threshold, is destabilised. In contrast, both the warm and cold equilibria satisfy $\frac{d\alpha}{dT} \approx 0$, leading to $B_{\rm eff}(x) \approx B > 0$ and a strictly negative eigenvalue spectrum, ensuring stability.

A.3 climateRL EBM Schematics



(a) ebm-v1 single-agent setup. The global agent observes the full zonal-mean temperature profile and outputs latitude-dependent radiative parameters $\{A_\phi, B_\phi\}$. Loss from observations are computed over all 96 latitudes.



(b) ebm-v2 multi-agent ensemble with FedRL agents operate on latitude groups with local rewards while receiving the global profile as input. Periodic aggregation every K episodes synchronises policy weights across n agents.

Figure A.1: Schematics for climateRL EBM environments

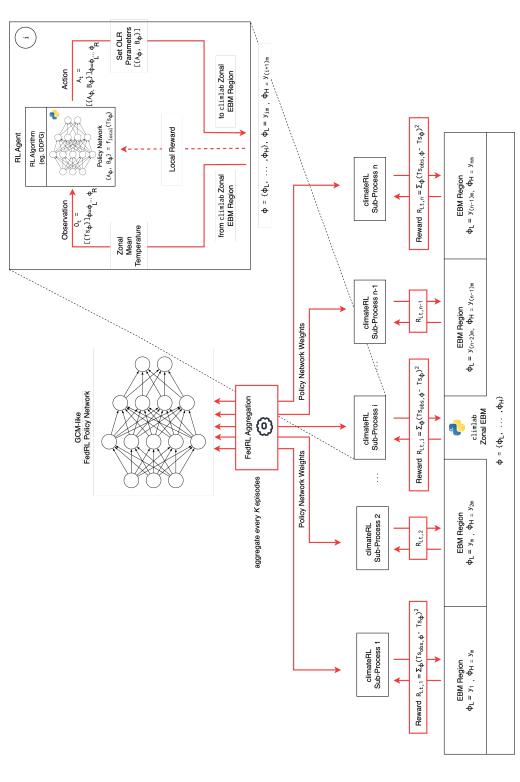


Figure A.1: Schematics for GCM-like ebm-v3. FedRL agents observe local temperature slices only (unlike ebm-v2) and optimise local rewards. Local rewards are computed over regions for each agent. Policy weights are aggregated every K episodes via Flower for FedRL and also contribute towards a global non-local policy.

A.4 RL Algorithm Hyperparameters

Table A.2: Tabular representation of different RL hyperparameters

Algorithm	Parameter Names	Count
DDPG	<pre>learning_rate, tau, batch_size, exploration_noise, policy_frequency, noise_clip, actor_critic_layer_size</pre>	7
TD3	<pre>learning_rate, tau, batch_size, policy_noise, exploration_noise, policy_frequency, noise_clip, actor_critic_layer_size</pre>	8
TQC	<pre>tau, batch_size, n_quantiles, n_critics, actor_adam_lr, critic_adam_lr, alpha_adam_lr, policy_frequency, target_network_frequency, actor_critic_layer_size</pre>	10

A.5 Experimental Outline

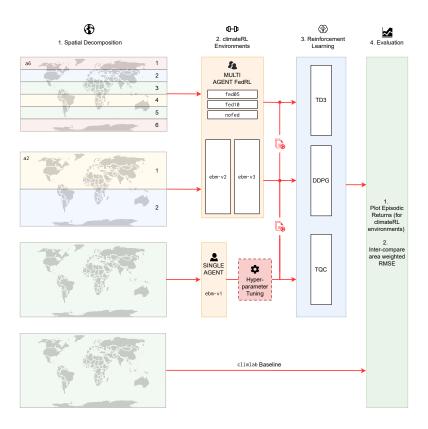


Figure A.2: Pipeline for the ebm-v1/2/3 experiments. The process begins with configuring the Budyko–Sellers EBM in either single-agent (ebm-v1) or spatially decomposed multi-agent forms (ebm-v2, ebm-v3) using two (a2) or six (a6) regions. Agents are trained with one of three RL algorithms (DDPG, TD3, TQC) under coordination schemes fed05, fed10, or nofed. In multi-agent settings, policies are periodically aggregated via FedRL every K episodes. Hyperparameters tuned for ebm-v1 are transferred over to ebm-v2/v3. Finally trained models are assessed on their training curves and benchmarked against a static climlab baseline, using a skill measure such as areaWRMSE across 30° latitude groups.

A.6 EBM State Evolution

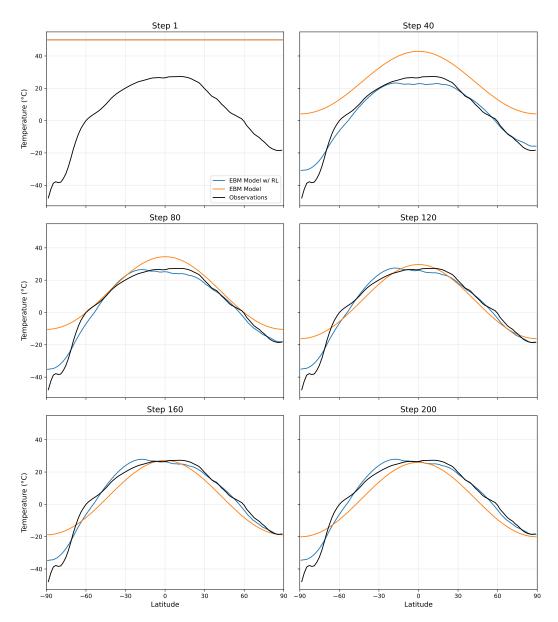


Figure A.3: Evolution of the zonal-mean surface temperature in the ebm-v1 climateRL environment over 200 integration steps. Each panel shows the latitudinal temperature profile at a selected timestep (t=1,40,80,120,160,200), comparing the DDPG-assisted EBM (blue) with the standard climlab EBM (orange) and reanalysis observations (black). The RL agent dynamically adjusts the OLR parameters A and B per latitude, improving temperature representation while maintaining physical consistency.

Appendix B Additional Results

B.1 Skill Metrics

Table B.3: Zonal-band errors for ebm-v2-optim-L-20k-a2. Each subtable reports mean ± std and relative gain % versus ebm-v1 for three regimes fed05, fed10 and nofed, along with a comparison against the static baseline climlab

(a) DDPG

_
lab
lim
e c
selii
; pa
tatic
parison against the star
ıst tl
gair
omparison aga
arisc
mp
ith
ng with a compa
ofed, along with a c
ed, į
nofe
H

cli 90°S-60°S	לי רשי רי	1		1		3		- m40
	a H	Mean ± Std	Gain %	Mean ± Std	Gain %	Mean ± Std	Gain %	
	11.453	5.11 ± 0.533	37.550	6.14 ± 0.964	25.040	16.17 ± 14.718	-97.490	8.19 ± 3.433
60°S-30°S 7.	7.768	3.08 ± 1.155	51.030	3.39 ± 0.775	46.080	10.30 ± 10.647	-63.620	6.30 ± 4.019
$30^{\circ}S-0^{\circ}$ 2.	2.730	3.46 ± 1.984	48.890	3.92 ± 1.642	42.080	12.24 ± 13.889	-81.120	6.76 ± 3.013
	3.746	2.80 ± 2.384	39.050	1.89 ± 1.325	58.760	2.23 ± 1.246	51.460	4.59 ± 2.068
Z	6.398	2.35 ± 0.866	11.350	2.26 ± 1.307	14.730	2.38 ± 1.253	10.360	2.65 ± 0.997
	5.566	1.60 ± 0.682	54.090	1.95 ± 0.995	44.060	2.49 ± 0.758	28.400	3.48 ± 1.790
				(b) TD3				
,	-	fed05		fed10	0	pejou	7	
CTI	climlab	Mean ± Std	Gain %	Mean ± Std	Gain %	Mean \pm Std	Gain %	epm-v1
90°S–60°S	11.453	8.00 ± 1.380	17.850	6.87 ± 0.825	29.520	7.72 ± 1.371	20.750	9.74 ± 3.330
$60^{\circ}S-30^{\circ}S$ 7.	7.768	7.32 ± 2.327	-2.870	5.51 ± 2.337	22.530	4.98 ± 1.696	29.980	7.12 ± 3.800
$30^{\circ}S-0^{\circ}$ 2.	2.730	4.47 ± 1.889	-17.750	4.77 ± 2.313	-25.480	3.49 ± 1.969	8.210	3.80 ± 1.713
$0^{\circ}-30^{\circ}N$ 3.	3.746	4.03 ± 2.409	-42.080	5.67 ± 3.152	-100.100	4.06 ± 2.277	-43.360	2.83 ± 1.247
N.	6.398	4.30 ± 2.556	14.860	4.79 ± 3.138	5.170	4.39 ± 1.941	13.060	5.06 ± 2.602
60°N–90°N 5.	5.566	3.54 ± 1.867	34.680	3.50 ± 1.518	35.360	5.63 ± 1.948	-4.030	5.42 ± 2.721
				(c) TQC				
		# P P P P P P P P P P P P P P P P P P P		f.pd.10		Lofor Log		
cli	climlab	Mean ± Std	Gain %	Mean ± Std	Gain %	Mean ± Std	Gain %	ebm-v1
	11.453	8.28 ± 0.896	8.550	8.13 ± 0.765	10.300	8.85 ± 1.124		9.06 ± 1.549
60°S–30°S 7.	7.768	7.46 ± 1.618	6.440	7.08 ± 1.382	11.120	8.24 ± 1.716	-3.390	7.97 ± 1.459
$30^{\circ}S-0^{\circ}$ 2.	2.730	2.83 ± 1.195	-26.510	2.34 ± 1.053	-4.390	3.32 ± 1.269	-48.170	2.24 ± 0.868
$0^{\circ}-30^{\circ}N$ 3.	3.746	2.30 ± 0.511	-25.400	2.19 ± 0.604	-19.480	2.49 ± 1.074	-35.470	1.84 ± 0.561
	6.398	0.93 ± 0.222	61.460	0.92 ± 0.149	61.860	1.23 ± 0.423	49.160	2.42 ± 0.706
$60^{\circ}N-90^{\circ}N$ 5.	5.566	1.34 ± 0.219	42.680	1.33 ± 0.352	43.140	1.44 ± 0.297	38.240	2.33 ± 0.767

Table B.4: Zonal-band errors for ebm-v2-optim-L-20k-a6. Each subtable reports mean ± std and relative gain % versus ebm-v1 for three regimes fed05, fed10 and nofed, along with a comparison against the static baseline climlab

Ü
Ē
Д
9
<u>(a</u>
_

	climlab	fed05 Mean±Std	5 Gain %	fed10 Mean±Std) Gain %	nofed Mean ± Std	Gain %	ebm-v1
90°S-60°S 30°S-30°S 30°S-30°S	11.453 7.768 2.730	7.26 ± 1.845 1.63 ± 1.478 1.92 ± 1.029	11.340 74.100 71.600	8.17 ± 2.886 1.51 ± 0.324 1.79 ± 0.624	0.260 76.020 73.580	20.52 ± 11.476 1.62 ± 0.843 2.31 ± 0.776	-150.600 74.240 65.870	8.19 ± 3.433 6.30 ± 4.019 6.76 ± 3.013
0°-30°N 0°05-00 0°05-00 0°-30°N 0°05-00 0°-30°N	3.746 6.398 5.566	1.89 ± 1.032 1.71 ± 0.697 2.43 ± 1.643		2.49 ± 1.509 2.19 ± 0.643 2.30 ± 1.338	45.850 17.530 34.050	2.59 ± 1.607 1.81 ± 0.998 2.42 ± 1.224		4.59 ± 2.068 2.65 ± 0.997 3.48 ± 1.790
				(b) TD3				
	climlab	fed05 Mean ± Std	15 Gain %	fed10 Mean ± Std	10 Gain %	nofed Mean ± Std	ed Gain %	ebm-v1
8°08-8°09	11.453	7.01 ± 2.553 3.16 ± 1.133	28.000	6.04 ± 0.933 3.52 ± 1.276	38.030		-63.150	9.74 ± 3.330 7.12 ± 3.800
30°S-0° 0°-30°N	2.730 3.746	7.68 ± 2.389 7.27 ± 2.023	-102.170 -156.640	8.16 ± 1.813 7.63 ± 1.859		0 6.10 ± 2.088 0 6.05 ± 2.532		_
N°00-N°08 N°00-N°08	6.398 5.566	3.92 ± 1.599 2.97 ± 1.614	22.380 45.090	3.80 ± 0.851 2.48 ± 1.563			31.460 -2.380	5.06 ± 2.602 5.42 ± 2.721

(c) TQC

		fed05	2	fed10	0	pojou		
	CIIMLab	Mean ± Std	Gain %	Mean \pm Std	Gain %	Mean \pm Std	Gain %	epm-vı
S ₀ 09-S ₀ 06	11.453	34.96 ± 7.034	-285.900	28.35 ± 7.956	-212.890	33.90 ± 7.319	-274.160	9.06 ± 1.549
$S_{\circ}0S-30_{\circ}S$	7.768	1.68 ± 1.087	78.890	1.69 ± 1.215	78.780	1.28 ± 0.393	83.920	7.97 ± 1.459
$30^{\circ}\mathrm{S}{-0}_{\circ}$	2.730	1.97 ± 1.814	11.850	2.25 ± 1.590	-0.480	0.80 ± 0.213	64.350	2.24 ± 0.868
$0^{\circ}-30^{\circ}N$	3.746	1.21 ± 0.670	34.310	1.77 ± 1.363	3.430	0.75 ± 0.190	59.300	1.84 ± 0.561
$30^{\circ}N-60^{\circ}N$	6.398	1.97 ± 1.492	18.750	1.73 ± 0.551	28.600	1.17 ± 0.330	51.920	2.42 ± 0.706
$N_{\circ}06-N_{\circ}09$	5.566	30.70 ± 8.534	-1215.560	32.88 ± 9.606	-1308.920	43.12 ± 14.594	-1747.640	2.33 ± 0.767

Table B.5: Zonal-band errors for ebm-v3-optim-L-20k-a2. Each subtable reports mean ± std and relative gain % versus ebm-v1 for three regimes fed05, fed10 and nofed, along with a comparison against the static baseline climlab

arison against the static baseline climlab (a) DDPG climlab Mean±Std Gain % Mean±Std Gain % Mean±Std Gain % ebm-v1 90°S-60°S 11.453 6.69±1.766 18.240 7.52±2.718 8.180 7.76±2.193 5.200 8.19±3.433 60°S-30°S 7.768 3.30±1.168 47.540 4.20±1.272 33.290 3.98±2.135 36.810 6.30±4.019 30°S-0° 2.730 4.84±2.151 28.340 3.77±2.190 44.220 3.26±1.873 51.720 6.76±3.013 0°-30°N 3.746 2.42±1.786 47.180 2.96±2.276 35.560 2.49±1.461 45.840 4.59±2.068 30°N-60°N 5.566 1.96±0.681 43.670 1.69±1.035 51.400 1.63±1.024 53.230 3.48±1.790		8.1 6.3 7.5 7.5 8.5 8.1
arison against the static baseline climlab (a) DDPG climlab Mean±Std Gain % Mean±Std Gain % Mean±Std C 90°S-60°S 11.453 6.69±1.766 18.240 7.52±2.718 8.180 7.76±2.193 60°S-30°S 7.768 3.30±1.168 47.540 4.20±1.272 33.290 3.98±2.135 30°S-0° 2.730 4.84±2.151 28.340 3.77±2.190 44.220 3.26±1.873 0°-30°N 3.746 2.42±1.786 47.180 2.96±2.276 35.560 2.49±1.461 43.670 1.69±1.035 51.400 1.63±1.024	Gain 6	5.200 36.810 51.720 45.840 -0.700
arison against the static baseline climlab (a) DDPG climlab Mean±Std Gain % Mean±Std Gain % 90°S-60°S 11.453 6.69±1.766 18.240 7.52±2.718 8.180 60°S-30°S 7.768 3.30±1.168 47.540 4.20±1.272 33.290 30°S-0° 2.730 4.84±2.151 28.340 3.77±2.190 44.220 0°-30°N 3.746 2.42±1.786 47.180 2.96±2.276 35.560 30°N-60°N 5.566 1.96±0.681 43.670 1.69±1.035 51.400	nofed Mean ± Std (7.76 ± 2.193 3.98 ± 2.135 3.26 ± 1.873 2.49 ± 1.461 2.67 ± 1.400
arison against the static baseline climlab (a) DDPG climlab Mean±Std Gain % Mean±Std 90°S-60°S 11.453 6.69±1.766 18.240 7.52±2.718 60°S-30°S 7.768 3.30±1.168 47.540 4.20±1.272 30°S-0° 2.730 4.84±2.151 28.340 3.77±2.190 0°-30°N 3.746 2.42±1.786 47.180 2.96±2.276 30°N-60°N 5.566 1.96±0.681 43.670 1.69±1.035	Gain %	8.180 33.290 44.220 35.560 -2.980
climlab 11.453 7.768 2.730 3.746 6.398 5.566	fed10 Mean±Std	7.52 ± 2.718 4.20 ± 1.272 3.77 ± 2.190 2.96 ± 2.276 2.73 ± 1.056 1.69 ± 1.035
arison against the static baseline clim climlab Mean ± Std 90°S-60°S 11.453 6.69 ± 1.766 60°S-30°S 7.768 3.30 ± 1.168 30°S-0° 2.730 4.84 ± 2.151 0°-30°N 3.746 2.42 ± 1.786 30°N-60°N 6.398 2.00 ± 0.885 60°N-90°N 5.566 1.96 ± 0.681	Gain %	18.240 47.540 28.340 47.180 24.650
arison against the static climlab 90°S-60°S 11.453 60°S-30°S 7.768 30°S-0° 2.730 0°-30°N 3.746 30°N-60°N 6.398 60°N-90°N 5.566	fed05 Mean±Std	6.69 ± 1.766 3.30 ± 1.168 4.84 ± 2.151 2.42 ± 1.786 2.00 ± 0.885 1.96 ± 0.681
90°S-60°S 60°S-30°S 30°S-0° 0°-30°N 30°N-60°N 60°N-90°N	climlab	11.453 7.768 2.730 3.746 6.398 5.566
		N.06-N.09 N.09-N.08 N.080 S.08-S.09 S.09-S.09
with a compa		

	10 5 5 5	fed05	2	fed10	0	nofed	q	1
	CIIMLab	Mean \pm Std	Gain %	Mean \pm Std	Gain %	Mean \pm Std	Gain %	epm-v1
S.09-S.06	11.453	7.53 ± 1.444	22.700	7.42 ± 1.159	23.880	7.54 ± 1.390	22.630	9.74 ± 3.330
$S_{\circ}0S-30_{\circ}S$	7.768	5.99 ± 2.663	15.800	5.51 ± 2.616	22.590	5.00 ± 2.586		7.12 ± 3.800
$30^{\circ}\text{S}{-}0^{\circ}$	2.730	3.84 ± 2.378	-1.030	3.65 ± 2.640	3.990	3.32 ± 1.380	12.690	3.80 ± 1.713
$0^{\circ}-30^{\circ}N$	3.746	7.52 ± 2.875	-165.300	7.54 ± 3.263	-166.260	5.94 ± 2.701	-109.610	2.83 ± 1.247
30°N-60°N	6.398	6.55 ± 1.837	-29.630	6.85 ± 2.390	-35.450	7.02 ± 2.581	-38.880	5.06 ± 2.602
$N_{\circ}06-N_{\circ}09$	5.566	3.94 ± 2.302	27.250	4.00 ± 1.708	26.240	4.49 ± 1.536	17.170	5.42 ± 2.721

(b) TD3

(c) TQC	mlab fed05 fed10 nofed ebm-v1 Mean±Std Gain % Mean±Std Gain % ebm-v1	453 8.27 ± 0.378 8.700 10.78 ± 4.522 -18.950 8.26 ± 0.303 8.840 9.06 ± 1.549 768 7.51 ± 0.869 5.780 10.76 ± 4.459 -35.000 7.62 ± 0.729 4.450 7.97 ± 1.459 730 2.60 ± 0.718 -15.960 7.27 ± 5.706 -224.680 3.02 ± 0.490 -34.920 2.24 ± 0.868 746 2.84 ± 0.774 -54.750 9.67 ± 17.637 -426.670 3.90 ± 0.434 -112.690 1.84 ± 0.561 398 3.59 ± 1.179 -48.070 11.05 ± 17.379 -355.740 4.13 ± 0.461 -70.350 2.42 ± 0.706 566 3.35 ± 1.003 -43.330 11.17 ± 18.477 -378.590 3.36 ± 0.394 -43.800 2.33 ± 0.767
	fed05 Mean ± Std	8.27 ± 0.378 7.51 ± 0.869 2.60 ± 0.718 2.84 ± 0.774 3.59 ± 1.179 3.35 ± 1.003
	climlab	11.453 7.768 2.730 3.746 6.398 5.566
		N.06-N.09 N.09-N.08 N.08-0.08 S.09-S.09 S.09-S.09

gimes fed05, fed10

(a) DDPG

Table B.O: Zonal-band errors for ebm-v3-optim-L-ZOK-ab. Each subtable reports mean ± std and relative g and nofed, along with a comparison against the static baseline climlab	gain % versus ebm-v1 for three regim	
	Zonal-band errors	ed, along with a comparison against the static ba

						_		330	300	713	247	502	721		_	-	549	159	898	561	90/	191
ebm-v1	8.19 ± 3.433 6.30 ± 4.019	6.76 ± 3.013	4.59 ± 2.068	± 0.397		ebm-v1		9.74 ± 3.330	7.12 ± 3.800	3.80 ± 1.713	2.83 ± 1.247	5.06 ± 2.602	5.42 ± 2.721		, 11 mq0	- N - III - N T	9.06 ± 1.549	7.97 ± 1.459	2.24 ± 0.868	1.84 ± 0.561	2.42 ± 0.706	2.33 ± 0.767
							Gam %	-28.000	-31.570	-349.090	-405.970	-14.340	-71.180			Gain %	-131.930	-131.180	-281.410	-369.770	-306.400	-288.430
a Gain %	11.690	-194.680	-278.850	49.480		nofed	Std	.601					494		nofed	Std					-	Ċ
nofed Mean±Std	7.23 ± 1.652 8.08 ± 4.816	19.92 ± 4.845	$[7.39 \pm 5.346 \times 0.000]$	3.92 ± 0.272 1.76 ± 1.176		V	Mean ± Std	12.47 ± 8.60	9.36 ± 5.302	17.06 ± 4.570	14.34 ± 2.496	5.78 ± 0.977	9.27 ± 6.494			Mean ± Std	21.01 ± 1.702	18.43 ± 1.047	8.54 ± 0.511	8.62 ± 0.503	9.85 ± 0.519	9.07 ± 1.682
			•			5	Cain %	-62.780	-48.860	-456.380	-649.370	-85.160	17.280			Gain %	-156.370	-177.000	-383.720	-489.610	-527.000	-762.090
Gain %	11.800	81.890	62.710	40.880 60.240		110					_				fed10							
fed10 Mean±Std	7.22 ± 1.399 3.69 ± 1.102	1.22 ± 0.526	1.71 ± 1.218	0.37 ± 0.090	(b) TD3	fe fe	Mean ± Std	15.86 ± 1.632	10.59 ± 0.481	21.14 ± 0.473	21.23 ± 0.61	9.36 ± 0.581	4.48 ± 0.536	(c) TQC	fe	Mean ± Std	23.23 ± 8.282	22.08 ± 8.752	10.84 ± 4.123	10.82 ± 2.018	15.20 ± 5.150	20.12 ± 8.341
Gain % M			67.830 1.		(a)		Cain %	-44.230	-53.120	-460.730	-655.550	-87.290	15.600	(c)	10	Gain %	-133.090	-136.340	-307.220	-412.530	-389.580	-509.050
fed05 Mean±Std			1.48 ± 0.61 /			fed05	Mean ± Std	14.05 ± 2.941	10.90 ± 0.644	21.30 ± 0.639	21.41 ± 0.467	9.47 ± 0.516	4.57 ± 0.484		fed05	Mean ± Std	21.12 ± 1.703	18.84 ± 0.971	9.12 ± 0.779	9.41 ± 0.789	11.87 ± 2.754	14.21 ± 7.349
climlab	11.453	2.730	3.746 6.300	5.566		climlab		11.453	7.768	2.730	3.746	6.398	5.566		4.5.6	CITIIITAD	11.453	7.768	2.730	3.746	6.398	5.566
	S°06-S°06	30°S-0°	0°-30°N 20°N 60°N	N°09-N°08				S ₀ 09-S ₀ 06	$S_{\circ}0S-30_{\circ}S$	$30^{\circ}\text{S}{-0}^{\circ}$	$0^{\circ}-30^{\circ}N$	$30^{\circ}N-60^{\circ}N$	$N_{\circ}06-N_{\circ}09$				S ₀ 09-S ₀ 06	$S_{\circ}0S-30_{\circ}S$	$30^{\circ}\text{S}{-0}_{\circ}$	$0^{\circ}-30^{\circ}N$	30°N-60°N	N°06-N°09

B.2 TD3 and TQC Performance Across FedRL EBM Configurations

For TD3 (in Figures B.4 (a) and (b)), performance in ebm-v2 shows competitive skill in tropical and mid-latitude zones under fed05, often matching or exceeding ebm-v1. However, variance increases substantially in the polar bands, particularly in the Southern Hemisphere, where sharp gradients appear harder to capture. In ebm-v3, TD3 displays more pronounced instability. While fed05 remains the most stable regime, episodic collapses in high-latitude bands lead to elevated RMSE compared to ebm-v2. This suggests that the reduced and region-specific input state in ebm-v3, may cause mismatch between hyperparameters tuned for global state inputs (in ebm-v1) and the regional profile inputs used in ebm-v3, leading to instability in critic ensemble updates.

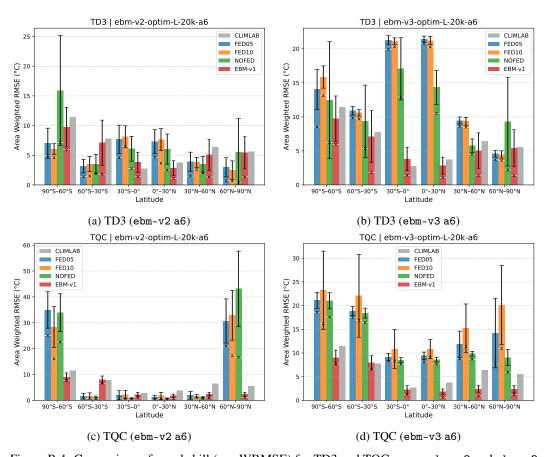


Figure B.4: Comparison of zonal skill (areaWRMSE) for TD3 and TQC across ebm-v2 and ebm-v3 in 6-agent federated setups averaged with 95% spreads over 10 seeds. White horizontal bars with a cross indicate the best-performing seed for each algorithm. Both setups adopt the same policy architecture and hyperparameters as ebm-v1. Skill metrics are presented in Appendix B.1.

TQC (in Figures B.4 (c) and (d)) performs strongly in ebm-v2 tropical bands under fed05, with clear gains over ebm-v1. However, the method shows instability in high-latitude zones and wider error bars under fed10, indicating a reliance on more frequent synchronisation for stability. In ebm-v3, TQC's performance degrades notably in the mid-latitudes, with polar areaWRMSE exceeding that of ebm-v1 in several cases. The large critic ensemble, which benefits global contexts, may be less effective when regional input profiles and rewards dominate, leading to overfitting or noisy updates. These patterns reaffirm that while both TD3 and TQC can yield strong results under favourable settings, DDPG's simpler architecture appears more robust to the structural changes between ebm-v2 and ebm-v3.

Appendix C Algorithm Pseudocode

C.1 Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 Deep Deterministic Policy Gradient (DDPG)

- 1: **Input:** Gym environment, Total timesteps T, Replay buffer size N, Discount factor γ , Target smoothing coefficient τ , Batch size B, Learning rate η , Exploration noise σ
- 2: **Initialise:** Policy network parameters θ , Q-function network parameters ϕ , target network parameters θ_{targ} , ϕ_{targ} , empty replay buffer \mathcal{D}
- 3: Pre-Setup: Configure seed and environment variables, prepare environment and logging

4: 5: **for** t = 1 **to** T **do**

6: Observe state s and select action $a = \pi_{\theta}(s)$

7: Add exploration noise $a \leftarrow a + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma)$ if required

8: Execute action a and observe next state s', reward r, and termination signal d

9: Store transition (s, a, r, s', d) in \mathcal{D}

10: **if** $t \ge \text{learning_starts then}$

Sample a minibatch of B transitions (s, a, r, s', d) from \mathcal{D}

12: Compute target for Q-function update:

13:

11:

$$y(r,s',d) = r + \gamma(1-d)Q_{\phi_{\text{targ}}}(s',\pi_{\theta_{\text{targ}}}(s'))$$

14: Update Q-function by minimising the loss:

15:

$$\phi \leftarrow \phi - \eta \nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

16: Update policy by one step of gradient ascent:

17:

$$\theta \leftarrow \theta + \eta \nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \pi_{\theta}(s))$$

18: Soft-update target networks:

19:

$$\theta_{\text{targ}} \leftarrow \tau \theta + (1 - \tau)\theta_{\text{targ}}, \quad \phi_{\text{targ}} \leftarrow \tau \phi + (1 - \tau)\phi_{\text{targ}}$$

20: **end if**

21: **end for**

C.2 Twin Delayed DDPG (TD3)

25: end for

Algorithm 2 Twin Delayed DDPG (TD3)

```
1: Input: Gym environment, Total timesteps T, Learning rate \eta, Replay buffer size N, Discount fac-
      tor \gamma, Target smoothing coefficient \tau, Batch size B, Policy noise \sigma_{\pi}, Noise clip \sigma_{\text{clip}}, Exploration
      noise \sigma_{\text{exploration}}, Policy update frequency f_{\pi}
 2: Initialise: Actor network \theta, Critic networks \phi_1, \phi_2, Target networks \theta_{tarq}, \phi_{tarq,1}, \phi_{tarq,2},
      Empty replay buffer \mathcal{D}
 3: Pre-Setup: Configure seed and environment variables, prepare environment and logging
 5: for t = 1 to T do
           Observe state s and select action a = \pi_{\theta}(s)
 6:
           Add exploration noise a \leftarrow a + \epsilon, where \epsilon \sim \mathcal{N}(0, \sigma_{\text{exploration}}) if required
 7:
           Execute action a and observe next state s', reward r, and done signal d
 8:
 9:
           Store transition (s, a, r, s', d) in \mathcal{D}
10:
           if t \ge \text{learning\_starts} then
                Sample a minibatch of B transitions (s, a, r, s', d) from \mathcal{D}
11:
                Compute target actions:
12:
13:
                                        a' \leftarrow \pi_{\theta_{targ}}(s') + \text{clip}(\mathcal{N}(0, \sigma_{\pi}), -\sigma_{\text{clip}}, \sigma_{\text{clip}})
                Compute target Q-values:
14:
15:
                                       y(r, s', d) \leftarrow r + \gamma (1 - d) \min_{i=1,2} Q_{\phi_{targ,i}}(s', a')
                Update critic networks by minimising the loss:
16:
17:
                       \phi_{i} \leftarrow \phi_{i} - \eta \nabla_{\phi_{i}} \frac{1}{|B|} \sum_{(s.a.r.s'.d) \in B} \left(Q_{\phi_{i}}(s,a) - y(r,s',d)\right)^{2}, \text{for } i = 1,2
                if t \mod f_{\pi} = 0 then
18:
                      Update actor network by policy gradient:
19:
20:
                                              \theta \leftarrow \theta + \eta \nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi_1}(s, \pi_{\theta}(s))
21:
                      Soft update target networks:
22:
                   \theta_{targ} \leftarrow \tau \theta + (1 - \tau)\theta_{targ}, \quad \phi_{targ,i} \leftarrow \tau \phi_i + (1 - \tau)\phi_{targ,i} \text{ for } i = 1, 2
                end if
23:
           end if
24:
```

C.3 Truncated Quantile Critics (TQC)

Algorithm 3 Truncated Quantile Critics (TQC)

- 1: **Input:** Gym environment, Total timesteps T, Replay buffer size N, Discount factor γ , Smoothing coefficient τ , Batch size B, Learning rate η , Number of quantiles N_q , Number of critics N_c , Drop quantiles $N_{\rm drop}$, Entropy coefficient α , Target entropy coefficient $\alpha_{\rm targ}$
- 2: **Initialise:** Actor network θ , Critic network parameters $\phi_1, \ldots, \phi_{N_c}$, Target critic network parameters $\phi_{\text{targ},1}, \ldots, \phi_{\text{targ},N_c}$, Replay buffer \mathcal{D}
- 3: Pre-Setup: Configure seed and environment variables, prepare environment and logging

5: for t = 1 to T do

7:

9:

11:

6: Select action $a \sim \pi_{\theta}(s)$ based on current policy and exploration strategy

Execute action a and observe next state s', reward r, and done signal d

8: Store transition tuple (s, a, r, s', d) in \mathcal{D}

if $t \ge \text{learning_starts}$ **then**

10: for i = 1 to N_c do

Sample a minibatch of B transitions (s, a, r, s', d) from \mathcal{D}

12: Compute target quantile values for critic $\phi_{target,i}$: 13:

$$y(r, s', d) = r + \gamma (1 - d) \left(Q_{\phi_{\text{targ}, i}}(s', \tilde{a}', N_{\text{drop}}) - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right)$$

14: where $\tilde{a}' \sim \pi_{\theta}(s')$

15: Update critic ϕ_i by minimising the quantile Huber loss:

$$\mathbf{L}^{\phi_i} = rac{1}{N_q} \sum_{k=1}^{N_q} \mathrm{HuberLoss}(Q_{\phi_i}(s_j, a_j, au_k) - y_j)$$

16: where τ_k are the quantile fractions

17: **end for**

18: Update policy by one step of gradient ascent:

19:

$$\theta \leftarrow \theta + \eta \nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left(-\alpha \log \pi_{\theta}(a|s) + \frac{1}{N_c} \sum_{i=1}^{N_c} Q_{\phi_i}(s, \pi_{\theta}(s)) \right)$$

20: Soft-update target networks:

21:

$$\phi_{\text{targ},i} \leftarrow \tau \phi_i + (1-\tau)\phi_{\text{targ},i} \text{ for } i = 1, 2, ..., N_c$$

22: Optionally adjust α based on entropy targets:

23:

$$\alpha \leftarrow \alpha + \eta \nabla_{\alpha} \frac{\alpha}{|B|} \sum_{s \in B} (\log \pi_{\theta}(a|s) + \alpha_{\text{targ}})$$

24: end if

25: end for