IMPERIAL

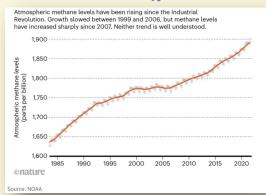
MEQNet: Deep Learning for Methane Point Source Emission Quantification from Sentinel-2 Observations

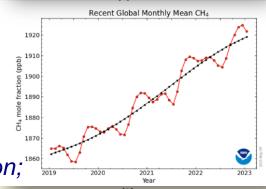
Di Xu^{1,2}, Philippa J. Mason², Jianguo Liu², Yanghua Wang^{1,2}

Outline:

Background Data Methodology Results

¹ Research Geophysics Academy, Imperial College London


² Department of Earth Science and Engineering, Imperial College London


Background

NEURAL INFORMATION PROCESSING SYSTEMS


- Methane: greenhouse gas, global warming
- > Remote Sensing Instruments:
 - TROPOMI: coarse spatial resolution
 - PRISMA/AVIRIS-NG: limited spatial coverage
 - Sentinel-2: higher spatial resolution; broad coverage
- Challenges in Current Methods:
 - Complex Process based on physical model (Radiative Transfer Model + Integrated Mass Enhancement)
 - Simulated data instead of real data
 - Limited Applicability to Complex Heterogeneous Surfaces

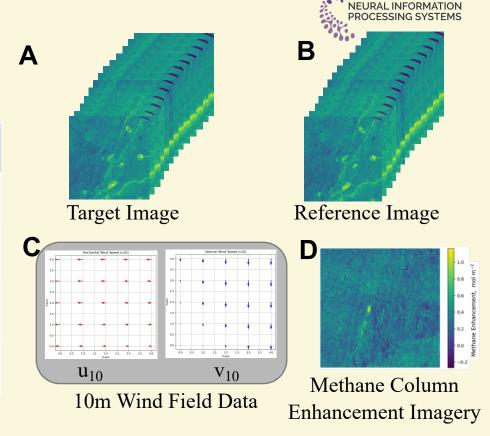
✓ Physics-Guided AI Model; Methane Emission Quantification;
Adaptability to Complex Scenarios

Objective

➤ A Deep Learning Framework for Methane Emission Quantification using Sentinel-2 satellite imagery

- Suppresses surface false positives
- Accelerates large-scale processing
- Generalizes across diverse surface types

Data

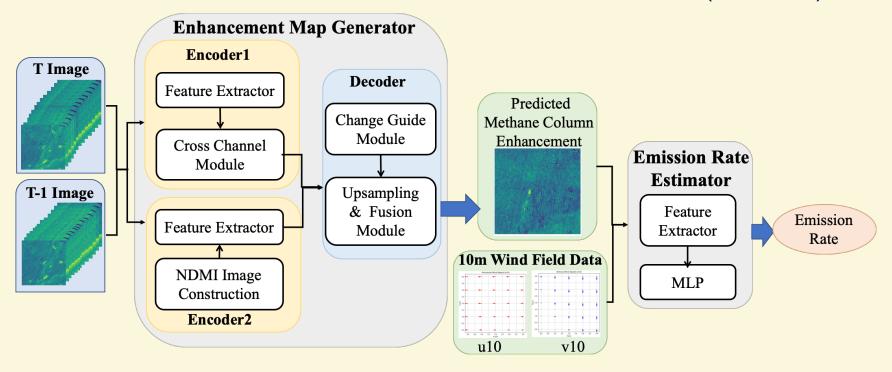

- Data Sources
- Carbon Mapper (2016-2024): plume geometries, column enhancement maps, emission rates
- Sentinel-2 L1C: 13-band multispectral imagery
- > ERA5: 10-m wind data

- Data Construction
- Match Carbon Mapper detections with cloud-free
 Sentinel-2 on same date
- Create image pairs (T, T-1) within 1-10 days
- Rasterize Carbon Mapper maps to Sentinel-2 grid
- Add negative samples (no plumes, background CH₄ level)

Data

Overview

Dataset	Positive	Negative	Total
Train	1975	1975	2950
Val	274	274	548
Test (2024y)	251	251	502
Total	2500	2500	5000

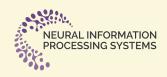


E Emission Rate (kg/hr)

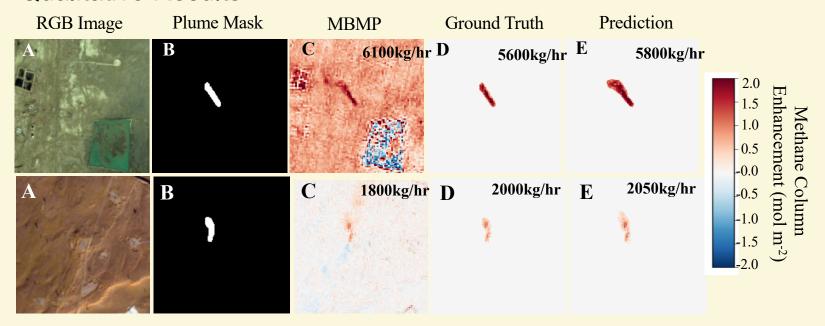
Method

Overview——Methane Emission Quantification Network (MEQNet)

Method


The Normalized Difference Methane Index (NDMI) is computed as:

$$NDMI = \frac{b_{11} - b_{12}}{b_{11} + b_{12}}$$

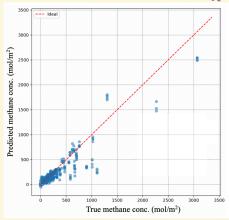

Joint loss function is calculated as

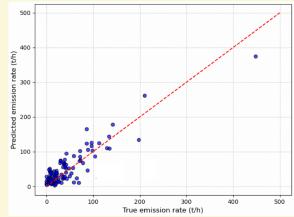
$$L_{total} = \lambda_{EMG} \cdot \frac{1}{HW} \sum_{x=1}^{H} \sum_{y=1}^{W} (E_{x,y} - \hat{E}_{x,y})^{2} + \lambda_{ERE} \cdot \frac{1}{N} \sum_{i=1}^{N} (R_{i} - \hat{R}_{i})^{2}$$

Results

Qualitative Results

- MBMP result → diffuse plume, surface noise
- MEQNet → sharp, localized plume, aligned with ground truth

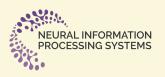

Results



Quantitative Evaluation

Performance across test set:

- ✓ Enhancement $R^2 = 0.91$
- ✓ Emission Rate $R^2 = 0.94$
- ✓ Processing Time < 2 s / scene</p>


Conclusion

Summary

- ✓ MEQNet directly estimates methane column enhancements and emission rates from Sentinel-2 imagery and 10-m wind data.
- ✓ Exploits methane-sensitive spectral bands and spectral-temporal differences to separate plumes from background.
- ✓ Dataset constructed from real Sentinel-2 observations with hyperspectral measurements and inventories, covering diverse surfaces.
- ✓ Validated results show fast, accurate, and scalable methane quantification.

Conclusion

- Future study
 - ✓ Robustness testing across diverse surface types
 - ✓ Generalization to global methane emission scenarios
 - ✓ Dataset expansion for more real-world events
 - ✓ Refinement of network modules for further performance improvements

IMPERIAL

THANK YOU

