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Problem | The unseen hurricane wind field {

Operational Analyses
= Lowtemporal resolution (6 hourly)
= Low spatial resolution

Inconsistent quality

Low-orbit satellites

Every 12-24 hours
Often partial coverage
Not yet well calibrated
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Impact

Emergency managers and
meteorologists could prepare better
with faster, more detailed
information.
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Solution | high resolution wind fields

High spatial resolution: 6°x6° complete fields
Increased temporal resolution: 10-15 minutes
Conlte structure: inner core + outer rainbands

Efficient: Low computational cost
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Data | Complimentary Synthetic and Real Data (( /))

1. wrf2wrf model
= 1,844 WRF simulation pairs

3

= 1,984 real satellite + parametric wind pairs

2. mir2para model
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Model Architecture | Pix2Pix GANs

Input samples Generator (G) enerated image Discriminator (D)
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Generator

creates wind fields from IR images

Discriminator

distinguishes real from generated

Adversarial training
improves both components
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Pixel-wise RMSE:
= wrf2wrf: 7.3 kt (min 2.6 kt)
" mir2para: 6.7 kt (min 1.2 kt)

diff (knots)

Cross-domain performance:

= wrf2wrf achieves 10.4 kt on
real images without
additional training
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Results | Comparable to Best Track Data

Wind radii comparison with

| BTI’ACS (International Best Track Archive for
Climate Stewardship):

= MAE: 8.9-12.0 NM across quadrants

Outperforms other Al methods:

= RMW RMSE: ~24 kmvs. 53 km In
prior work

= Greater spatial coverage: 6°x6°
(~666 km) vs ~3.6°x3.6°.
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Impact | Climate Mitigation

Earlier, faster high-resolution TC wind information for:
= Operational meteorologists

" Emergency managers

= Disaster preparedness teams

= Climate resilience planning

Real-time deployment potential
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Next steps L)

= Category-specific tuning: Route to specialized models by intensity
" Physics-conditioned learning: Incorporate storm characteristics

= Operational deployment and validation

= Extension to other basins/regions
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Key Ta ke a W a y S ';,-I":.EA;F:ROCESSING SYSTEMS

v Successfully generate realistic TC wind fields from satellite imagery
v Low computational cost, high temporal/spatial resolution

v Performance comparable to operational data

v Ready for operational deployment

O Worldsphere

Prediction
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Revolutionizing Climate Resilience with Al-Powered Weather
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